Living probiotic bacteria can be used as an alternative treatment to fight antibiotic-resistant, pathogenic bacteria. Electrospinning probiotics into nanofibers allows the probiotics to be conveniently applied like a wound dressing to protect open wounds while providing antimicrobial activity. In this letter, we encapsulated into biocompatible, alginate-based nanofiber scaffolds.
View Article and Find Full Text PDFCationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design.
View Article and Find Full Text PDFThe use of alginate nanofibers in certain biomedical applications, including targeted delivery to the gut, is limited because an ethanol-free, biocompatible cross-linking method has not been demonstrated. Here, we developed water-stable, alginate-based nanofibers by systematically exploring post-electrospinning cross-linking approaches that used calcium ions dissolved in (1) a glycerol/water cosolvent system and (2) acidic, neutral, or basic aqueous solutions. Scanning electron microscopy proved that the fibers cross-linked in a glycerol cosolvent or pH-optimized solutions had maintained the same morphology as the ethanol-based literature control.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2023
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria.
View Article and Find Full Text PDFCorrection for 'Encapsulating bacteria in alginate-based electrospun nanofibers' by Emily Diep , , 2021, , 4364-4373, DOI: 10.1039/D0BM02205E.
View Article and Find Full Text PDFEncapsulation technologies are imperative for the safe delivery of live bacteria into the gut where they regulate bodily functions and human health. In this study, we develop alginate-based nanofibers that could potentially serve as a biocompatible, edible probiotic delivery system. By systematically exploring the ratio of three components, the biopolymer alginate (SA), the carrier polymer poly(ethylene oxide) (PEO), and the FDA approved surfactant polysorbate 80 (PS80), the surface tension and conductivity of the precursor solutions were optimized to electrospin bead-free fibers with an average diameter of 167 ± 23 nm.
View Article and Find Full Text PDF