The dystrophin-associated protein complex (DAPC) is a highly organized multiprotein complex that plays a pivotal role in muscle fiber structure integrity and cell signaling. The complex is composed of three distinct interacting subgroups, intracellular peripheral proteins, transmembrane glycoproteins, and extracellular glycoproteins subcomplexes. Dystrophin protein nucleates the DAPC and is important for connecting the intracellular actin cytoskeletal filaments to the sarcolemma glycoprotein complex that is connected to the extracellular matrix via laminin, thus stabilizing the sarcolemma during muscle fiber contraction and relaxation.
View Article and Find Full Text PDFThe black-legged tick, Ixodes scapularis, is a well-known vector for the Lyme disease-causing pathogen (Borrelia burgdorferi) but can also carry other disease-causing pathogens such as Rickettsia, Anaplasma, Bartonella, Ehrlichia, and Theileria. Hence, tick screening using highly specific protein signatures for specific pathogens will help assess the prevalence of infected ticks and understand the pathogen-tick interactions in a specific geographic area. In this study, we used data-dependent acquisition to key pathogen protein signatures in black-legged ticks collected from the Southern Tier New York.
View Article and Find Full Text PDFBackground: Myogenesis is a dynamic process involving temporal changes in the expression of many genes. Lack of dystrophin protein such as in Duchenne muscular dystrophy might alter the natural course of gene expression dynamics during myogenesis.
Objective: To gain insight into the dynamic temporal changes in protein expression during differentiation of normal and dystrophin deficient myoblasts to myotubes.
Recently, the Food and Drug Administration granted accelerated approvals for four exon skipping therapies -Eteplirsen, Golodirsen, Viltolarsen, and Casimersen -for Duchenne Muscular Dystrophy (DMD). However, these treatments have only demonstrated variable and largely sub-therapeutic levels of restored dystrophin protein in DMD patients, limiting their clinical impact. To better understand variable protein expression and the behavior of truncated dystrophin protein in vivo, we assessed turnover dynamics of restored dystrophin and dystrophin glycoprotein complex (DGC) proteins in mdx mice after exon skipping therapy, compared to those dynamics in wild type mice, using a targeted, highly-reproducible and sensitive, in vivo stable isotope labeling mass spectrometry approach in multiple muscle tissues.
View Article and Find Full Text PDFThe availability of an in vitro canine cell line would reduce the need for dogs for primary in vitro cell culture and reduce overall cost in pre-clinical studies. An immortalized canine muscle cell line, named Myok9, from primary myoblasts of a normal dog has been developed by the authors. Immortalization was performed by SV40 viral transfection of the large T antigen into the primary muscle cells.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that abolish the expression of dystrophin protein. Dogs with the genetic homologue, golden retriever muscular dystrophy dog (GRMD), have a splice site mutation that leads to skipping of exon 7 and a stop codon in the DMD transcript. Gene editing via homology-directed repair (HDR) has been used in the mdx mouse model of DMD but not in GRMD.
View Article and Find Full Text PDFThe need for a reliable and accurate method to quantify dystrophin proteins in human skeletal muscle biopsies has become crucial in order to assess the efficacy of dystrophin replacement therapies in Duchenne muscular dystrophy as well as to gain insight into the relationship between dystrophin levels and disease severity in Becker's muscular dystrophy. Current methods to measure dystrophin such as western blot and immunofluorescence, while straightforward and simple, lack precision and sometimes specificity. Here, we standardized a targeted mass spectrometry method to determine the absolute amount of dystrophin in ng/mg of muscle using full-length C6-Arg- and C6, N2-Lys-labeled dystrophin and parallel reaction monitoring (PRM).
View Article and Find Full Text PDF