The properties of crystalline materials tend to be strongly correlated with their structures, and the prediction of crystal structure from only the composition is a coveted goal in the field of inorganic materials. However, even for the simplest compositions, such prediction relies on a complex network of interactions, including atomic or ionic radii, ionicity, electronegativity, position in the periodic table, and magnetism, to name only a few important parameters. We focus here on the ABX (ABO and ABF) composition space with the specific goal of finding new oxide compounds in the trirutile family, which is known for unusual one-dimensional (1D) antiferromagnetic behavior.
View Article and Find Full Text PDFRecently discovered alongside its sister compounds KV_{3}Sb_{5} and RbV_{3}Sb_{5}, CsV_{3}Sb_{5} crystallizes with an ideal kagome network of vanadium and antimonene layers separated by alkali metal ions. This work presents the electronic properties of CsV_{3}Sb_{5}, demonstrating bulk superconductivity in single crystals with a T_{c}=2.5 K.
View Article and Find Full Text PDFThe newly introduced class of 3D halide perovskites, termed "hollow" perovskites, has been recently demonstrated as light absorbing semiconductor materials for fabricating lead-free perovskite solar cells with enhanced efficiency and superior stability. Hollow perovskites derive from three-dimensional (3D) AMX perovskites ( A = methylammonium (MA), formamidinium (FA); M = Sn, Pb; X = Cl, Br, I), where small molecules such as ethylenediammonium cations ( en) can be incorporated as the dication without altering the structure dimensionality. We present in this work the inherent structural properties of the hollow perovskites and expand this class of materials to the Pb-based analogues.
View Article and Find Full Text PDFThe temperature-dependent structure evolution of the hybrid halide perovskite compounds, formamidinium tin iodide (FASnI, FA = CH[NH]) and formamidinium lead bromide (FAPbBr), has been monitored using high-resolution synchrotron X-ray powder diffraction between 300 and 100 K. The data are consistent with a transition from cubic Pm3m (No. 221) to tetragonal P4/mbm (No.
View Article and Find Full Text PDFA thiol-amine solvent mixture is used to dissolve ten inexpensive bulk oxides (Cu2O, ZnO, GeO2, As2O3, Ag2O, CdO, SnO, Sb2O3, PbO, and Bi2O3) under ambient conditions. Dissolved oxides can be converted to the corresponding sulfides using the thiol as the sulfur source, while selenides and tellurides can be accessed upon mixing with a stoichiometric amount of dissolved selenium or tellurium. The practicality of this method is illustrated by solution depositing Sb2Se3 thin films from compound inks of dissolved Sb2O3 and selenium that give high photoelectrochemical current response.
View Article and Find Full Text PDF