Exercise-based cardiac rehabilitation leads to improvements in cardiovascular function in individuals with coronary artery disease. The cardiac effects of coronary artery disease (CAD) can be quantified using clinical echocardiographic measures, such as ejection fraction (EF). Measures of cardiovascular function typically only used in research settings can provide additional information and maybe more sensitive indices to assess changes after exercise-based cardiac rehabilitation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2021
Due to the high individual differences in the anatomy and pathophysiology of patients, planning individualized treatment requires patient-specific diagnosis. Indeed, hemodynamic quantification can be immensely valuable for accurate diagnosis, however, we still lack precise diagnostic methods for numerous cardiovascular diseases including complex (and mixed) valvular, vascular, and ventricular interactions (C3VI) which is a complicated situation made even more challenging in the face of other cardiovascular pathologies. Transcatheter aortic valve replacement (TAVR) is a new less invasive intervention and is a growing alternative for patients with aortic stenosis.
View Article and Find Full Text PDFCardiac rehabilitation exercise reduces the risk of secondary cardiovascular disease. Interval training is a time-efficient alternative to traditional cardiac rehabilitation exercise and stair climbing is an accessible means. We aimed to assess the effectiveness of a high-intensity interval stair climbing intervention on improving cardiorespiratory fitness ( ) compared to standard cardiac rehabilitation care.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2021
Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum.
View Article and Find Full Text PDFPurpose: There is a lack of knowledge as to how different exercise-based cardiac rehabilitation programming affects skeletal muscle adaptations in coronary artery disease (CAD) patients. We first characterized the skeletal muscle from adults with CAD compared with a group of age- and sex-matched healthy adults. We then determined the effects of a traditional moderate-intensity continuous exercise program (TRAD) or a stair climbing-based high-intensity interval training program (STAIR) on skeletal muscle metabolism in CAD.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2020
Fluctuations in endogenous hormones estrogen and progesterone during the menstrual cycle may offer vasoprotection for endothelial and smooth muscle (VSM) function. While numerous studies have been published, the results are conflicting, leaving our understanding of the impact of the menstrual cycle on vascular function unclear. The purpose of this systematic review and meta-analysis was to consolidate available research exploring the role of the menstrual cycle on peripheral vascular function.
View Article and Find Full Text PDFObjective: To examine longitudinal changes in traditional and non-traditional risk factors for cardiovascular disease in individuals with cerebral palsy and to investigate relationships between age, Gross Motor Function Classification System (GMFCS) and risk of cardiovascular disease.
Methods: Individuals with cerebral palsy (n = 28 of 53 eligible participants; GMFCS levels I-V; follow-up mean age 35.1 years (standard deviation (SD) 14.
Am J Physiol Heart Circ Physiol
November 2018
Skeletal muscle is the largest and most important site of capillary-tissue exchange, especially during high-energy demand tasks such as exercise; however, information regarding the role of the microcirculation in maintaining skeletal muscle health is limited. Changes in microcirculatory function, as observed with aging, chronic and cardiovascular diseases, and exercise, likely precede any alterations that arise in larger vessels, although further investigation into these changes is required. One of the main barriers to addressing this knowledge gap is the lack of methodologies for quantifying microvascular function in vivo; the utilization of valid and noninvasive quantification methods would allow the dynamic evaluation of microvascular flow during periods of clinical relevance such as during increased demand for flow (exercise) or decreased demand for flow (disuse).
View Article and Find Full Text PDFWeight regain, adipose tissue growth, and insulin resistance can occur within days after the cessation of regular dieting and exercise. This phenomenon has been attributed, in part, to the actions of stress hormones as well as local and systemic inflammation. We investigated the effect of curcumin, a naturally occurring polyphenol known for its anti-inflammatory properties and inhibitory action on 11β-HSD1 activity, on preserving metabolic health and limiting adipose tissue growth following the cessation of daily exercise and caloric restriction (CR).
View Article and Find Full Text PDFAltered permeability of the endothelial barrier in a variety of tissues has implications both in disease pathogenesis and treatment. Glucocorticoids are potent mediators of endothelial permeability, and this forms the basis for their heavily prescribed use as medications to treat ocular disease. However, the effect of glucocorticoids on endothelial barriers elsewhere in the body is less well studied.
View Article and Find Full Text PDFSustained elevations in circulating glucocorticoids elicit reductions in skeletal muscle microvascular content, but little is known of the underlying mechanisms. We hypothesized that glucocorticoid-induced oxidative stress contributes to this phenomenon. In rats that were implanted with corticosterone (CORT) or control pellets, CORT caused a significant decrease in muscle glutathione levels and a corresponding increase in protein carbonylation, an irreversible oxidative modification of proteins.
View Article and Find Full Text PDFType-1 diabetes mellitus (T1D) causes impairments within the skeletal muscle microvasculature. Both regular exercise and prazosin have been shown to improve skeletal muscle capillarization and metabolism in healthy rats through distinct angiogenic mechanisms. The aim of this study was to evaluate the independent and additive effects of voluntary exercise and prazosin treatment on capillary-to-fiber ratio (C:F) in streptozotocin (STZ)-treated diabetic rats.
View Article and Find Full Text PDFGlucocorticoids (GCs) are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA) axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development.
View Article and Find Full Text PDFGlucocorticoids (GC) elicit skeletal muscle capillary rarefaction, which can subsequently impair blood distribution and muscle function; however, the mechanisms have not been established. We hypothesized that CORT would inhibit endothelial cell survival signals but that treatment with the alpha-1 adrenergic receptor inhibitor prazosin, which leads to angiogenesis in skeletal muscle of healthy rats, would reverse these effects and induce angiogenesis within the skeletal muscle of corticosterone (CORT)-treated rats. Male Sprague Dawley rats were implanted subcutaneously with CORT pellets (400 mg/rat), with or without concurrent prazosin treatment (50mg/L in drinking water), for 1 or 2 weeks.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2017
High-dose glucocorticoids (GC) induce skeletal muscle atrophy, insulin resistance, and reduced muscle capillarization. Identification of treatments to prevent or reverse capillary rarefaction and metabolic deterioration caused by prolonged elevations in GCs would be therapeutically beneficial. Chronic administration of prazosin, an α-adrenergic antagonist, increases skeletal muscle capillarization in healthy rodents and, recently, in a rodent model of elevated GCs and hyperglycemia.
View Article and Find Full Text PDFSevere caloric restriction (CR), in a setting of regular physical exercise, may be a stress that sets the stage for adiposity rebound and insulin resistance when the food restriction and exercise stop. In this study, we examined the effect of mifepristone, a glucocorticoid (GC) receptor antagonist, on limiting adipose tissue mass gain and preserving whole body insulin sensitivity following the cessation of daily running and CR. We calorically restricted male Sprague-Dawley rats and provided access to voluntary running wheels for 3 wk followed by locking of the wheels and reintroduction to ad libitum feeding with or without mifepristone (80 mg·kg(-1)·day(-1)) for 1 wk.
View Article and Find Full Text PDFDiabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic β-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old).
View Article and Find Full Text PDFThe blockade of glucocorticoid (GC) action through antagonism of the glucocorticoid receptor II (GRII) has been used to minimize the undesirable effects of chronically elevated GC levels. Mifepristone (RU486) is known to competitively block GRII action, but not exclusively, as it antagonizes the progesterone receptor. A number of new selective GRII antagonists have been developed, but limited testing has been completed in animal models of overt type 2 diabetes mellitus.
View Article and Find Full Text PDFThe oxidation of carbohydrates in mammals is regulated by the pyruvate dehydrogenase (PDH) complex, which is covalently regulated by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) unique to the PDH complex. To investigate the role that PDK4 plays in regulating PDH activation (PDHa) during muscle contraction, mouse extensor digitorum muscle was removed from wild type (WT) and PDK4-knockout (PDK4-KO) mice after a 24 h fast and stimulated for 3 min either at 10 Hz (low-intensity contraction), 40 Hz (moderate-intensity contraction), or allowed to rest. Force was recorded and muscle PDHa activity and metabolite concentrations were measured.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2011
Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PDH is deactivated by a set of PDH kinases (PDK1, PDK2, PDK3, PDK4), with PDK2 and PDK4 being the most predominant isoforms in skeletal muscle. Although PDK2 is the most abundant isoform, few studies have examined its physiological role.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.