Publications by authors named "Emily C Chiang"

Emerging evidence in women supports the notion that pregnancy may reset disease resistance, thereby providing protection against subsequent adverse health outcomes, but this hypothesis has not been adequately explored in domestic dogs. Cranial cruciate ligament (CCL) rupture is a degenerative orthopedic disease that frequently affects pet dogs, and its risk has been associated with disruption of the reproductive hormone axis. Our research team is conducting a lifetime cohort study of purebred Rottweilers in North America that have lived 30% longer than breed-average.

View Article and Find Full Text PDF

Cranial cruciate ligament (CCL) rupture is one of the most commonly diagnosed orthopedic conditions of pet dogs, making estimated lifetime cruciate ligament survival an attractive endpoint for studies attempting to define clinical and genetic correlates of rupture risk reduction. Early life experiences contribute significantly to the origins of adult health outcomes, yet our current understanding of modifiable susceptibility factors that drive the high frequency of CCL rupture remains limited. We reasoned that combining lifetime medical history with standardized late-life assessment of lifetime cruciate ligament survival and detailed phenotyping of each dog for selected risk variables would provide a sensitive approach to identify factors that would differentiate between lifelong avoidance versus susceptibility to ligament rupture.

View Article and Find Full Text PDF

Prostate cancer is one of the leading causes of cancer-related mortality among men living in developed countries, making the development of safe, practical approaches to prostate cancer risk reduction a high research priority. The relationship between prostate cancer risk and selenium, an essential nutrient required for a number of metabolically important enzymes including glutathione peroxidases, has been investigated, but a satisfactory integration of results has proven elusive. Dogs, like men, naturally develop prostate cancer during aging, providing an appropriate context to study the effects of selenium supplementation on the dysregulation of homeostasis that drives cancer development within the aging prostate.

View Article and Find Full Text PDF

The anti-cancer activity of organic selenium has been most consistently documented at supra-nutritional levels at which selenium-dependent, antioxidant enzymes are maximized in both expression and activity. Thus, there is a strong imperative to identify mechanisms other than antioxidant protection to account for selenium's anti-cancer activity. In vivo work in dogs showed that dietary selenium supplementation decreased DNA damage but increased apoptosis in the prostate, leading to a new hypothesis: Organic selenium exerts its cancer preventive effect by selectively increasing apoptosis in DNA-damaged cells.

View Article and Find Full Text PDF

Prostate cancer is the product of dysregulated homeostasis within the aging prostate. Supplementation with selenium in the form of selenized yeast (Se-yeast) significantly reduced prostate cancer incidence in the Nutritional Prevention of Cancer Trial. Conversely, the Selenium and Vitamin E Cancer Prevention Trial (SELECT) showed no such cancer-protective advantage using selenomethionine (SeMet).

View Article and Find Full Text PDF

A year-long intervention trial was conducted to characterise the responses of multiple biomarkers of Se status in healthy American adults to supplemental selenomethionine (SeMet) and to identify factors affecting those responses. A total of 261 men and women were randomised to four doses of Se (0, 50, 100 or 200 μg/d as L-SeMet) for 12 months. Responses of several biomarkers of Se status (plasma Se, serum selenoprotein P (SEPP1), plasma glutathione peroxidase activity (GPX3), buccal cell Se, urinary Se) were determined relative to genotype of four selenoproteins (GPX1, GPX3, SEPP1, selenoprotein 15), dietary Se intake and parameters of single-carbon metabolism.

View Article and Find Full Text PDF

Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to show that the selenium dose that minimizes prostatic DNA damage also maximizes apoptosis-a cancer-suppressing death switch used by prostatic epithelial cells. These provocative findings suggest a new line of thinking about how selenium can reduce cancer risk.

View Article and Find Full Text PDF

Now, more than ever, there is great need for personalized cancer prevention. We define personalized cancer prevention as a strategy that will enable each person to reduce his or her risk for lethal cancer by matching the dose, duration, and timing of an intervention with their own cancer risk profile. Most research studies provide us with data on the average person.

View Article and Find Full Text PDF

To move closer to the goal of individualized risk prediction for prostate cancer, we used an in vivo canine model to evaluate whether the susceptibility of peripheral blood lymphocytes (PBLs) to oxidative stress-induced DNA damage could identify those individuals with the highest prostatic DNA damage. This hypothesis was tested in a population of 69 elderly male beagle dogs after they had completed a 7-month randomized feeding trial to achieve the broad range of dietary selenium status observed in U.S.

View Article and Find Full Text PDF

The role of the essential trace mineral selenium in human health and disease is currently a subject of intense interest. In particular, the possible cancer preventive effects of dietary selenium supplementation are now being investigated in several large, randomized trials. The association between selenium status, genotoxic damage, and cancer risk remains enigmatic because epidemiologic studies have failed to consistently link low selenium status with increased cancer risk in men and women.

View Article and Find Full Text PDF