Amniotic membrane transplantation is an established therapeutic and biological adjunct for several clinical situations, including treatment of diabetic foot ulcers and ocular surface disease. However, poorly standardized and validated clinical preparation and storage procedures can render the final product highly variable and an unpredictable biomaterial. We have therefore developed a novel, standardized method for processing and dry-preserving amniotic membrane, minimizing biochemical, compositional, and structure damage to produce a potentially superior membrane suitable for clinical use.
View Article and Find Full Text PDFAmniotic membrane (AM) is used to treat a range of ophthalmic indications but must be presented in a non-contaminated state. AM from elective caesarean sections contains natural microbial contamination, requiring removal during processing protocols. The aim of this study was to assess the ability of antibiotic decontamination of AM, during processing by innovative low-temperature vacuum-drying.
View Article and Find Full Text PDFThe accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures.
View Article and Find Full Text PDFNonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response.
View Article and Find Full Text PDF