Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (T) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index T cells and tracked their frequency in bulk TCRβ repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory T cell clonotypes, most of which were CD8 T cells, while also eliciting diverse T cell clonotypes not observed before vaccination.
View Article and Find Full Text PDFBecause virus neutralization cannot solely explain vaccine-induced, antibody-mediated protection, antibody effector functions are being considered as a potential correlate of protection (CoP). However, measuring effector functions at a fixed serum dilution for high throughput purposes makes it difficult to distinguish between the effect of serum antibody concentration and antibody properties such as epitopes, subclass, and glycosylation. To address this issue, we evaluated antibody-dependent cellular phagocytosis (ADCP) assay against SARS-CoV-2 spike.
View Article and Find Full Text PDFAlmost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination.
View Article and Find Full Text PDFThe human Betacoronavirus OC43 is a common cause of respiratory viral infections in adults and children. Lung infections with OC43 are associated with mortality, especially in hematopoietic stem cell transplant recipients. Neutralizing antibodies play a major role in protection against many respiratory viral infections, but to date a live viral neutralization assay for OC43 has not been described.
View Article and Find Full Text PDFDeterminants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories.
View Article and Find Full Text PDFThe ectocervix is part of the lower female reproductive tract (FRT), which is susceptible to sexually transmitted infections (STIs). Comprehensive knowledge of the phenotypes and T cell receptor (TCR) repertoire of tissue-resident memory T cells (TRMs) in the human FRT is lacking. We took single-cell RNA-Seq approaches to simultaneously define gene expression and TCR clonotypes of the human ectocervix.
View Article and Find Full Text PDFDeterminants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test.
View Article and Find Full Text PDFCommunity-level seroprevalence surveys are needed to determine the proportion of the population with previous SARS-CoV-2 infection, a necessary component of COVID-19 disease surveillance. In May, 2020, we conducted a cross-sectional seroprevalence study of IgG antibodies for nucleocapsid of SARS-CoV-2 among the residents of Blaine County, Idaho, a ski resort community with high COVID-19 attack rates in late March and Early April (2.9% for ages 18 and older).
View Article and Find Full Text PDF