Purpose: Despite standard of care (SOC) established by Stupp, glioblastoma remains a uniformly poor prognosis. We evaluated IGV-001, which combines autologous glioblastoma tumor cells and an antisense oligonucleotide against IGF type 1 receptor (IMV-001), in newly diagnosed glioblastoma.
Patients And Methods: This open-label protocol was approved by the Institutional Review Board at Thomas Jefferson University.
For the past 100 years, oncologists have relentlessly pursued the destruction of tumor cells by surgical, chemotherapeutic or radiation oncological means. Consistent with this focus, treatment plans are typically based on key characteristics of the tumor itself such as disease site, histology and staging based on local, regional and systemic dissemination. Precision medicine is similarly built on the premise that detailed knowledge of molecular alterations of tumor cells themselves enables better and more effective tumor cell destruction.
View Article and Find Full Text PDFPurpose: Scintigraphic imaging of malignant glioblastoma (MG) continues to be challenging. We hypothesized that VPAC1 cell surface receptors can be targeted for positron emission tomography (PET) imaging of orthotopically implanted MG in a mouse model, using a VPAC1-specific peptide [Cu]TP3805.
Procedures: The expression of VPAC1 in mouse GL261 and human U87 glioma cell lines was determined by western blot.
Immunotherapeutic strategies for malignant glioma have to overcome the immunomodulatory activities of M2 monocytes that appear in the circulation and as tumor-associated macrophages (TAMs). M2 cell products contribute to the growth-promoting attributes of the tumor microenvironment (TME) and bias immunity toward type 2, away from the type 1 mechanisms with antitumor properties. To drive type 1 immunity in CNS tissues, we infected GL261 tumor-bearing mice with attenuated rabies virus (RABV).
View Article and Find Full Text PDFUnlabelled: Previous animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ.
View Article and Find Full Text PDFA single intramuscular application of the live but not UV-inactivated recombinant rabies virus (RABV) variant TriGAS in mice induces the robust and sustained production of RABV-neutralizing antibodies that correlate with long-term protection against challenge with an otherwise lethal dose of the wild-type RABV. To obtain insight into the mechanism by which live TriGAS induces long-lasting protective immunity, quantitative PCR (qPCR) analysis of muscle tissue, draining lymph nodes, spleen, spinal cord, and brain at different times after TriGAS inoculation revealed the presence of significant copy numbers of RABV-specific RNA in muscle, lymph node, and to a lesser extent, spleen for several days postinfection. Notably, no significant amounts of RABV RNA were detected in brain or spinal cord at any time after TriGAS inoculation.
View Article and Find Full Text PDF