This scoping review examined literature on dementia education programs (DEPs) for healthcare providers and students. The search was conducted using the Discover! search engine that includes 63 databases. The review included a total of 25 articles that met the eligibility criteria.
View Article and Find Full Text PDFDesmosomes are cell-cell junctions that provide mechanical integrity to epithelial and cardiac tissues. Desmosomes have two distinct adhesive states, calcium-dependent and hyperadhesive, which balance tissue plasticity and strength. A highly ordered array of cadherins in the adhesive interface is hypothesized to drive hyperadhesion, but how desmosome structure confers adhesive state is still elusive.
View Article and Find Full Text PDFPodosomes are ubiquitous cellular structures important to diverse processes including cell invasion, migration, bone resorption, and immune surveillance. Structurally, podosomes consist of a protrusive actin core surrounded by adhesion proteins. Although podosome protrusion forces have been quantified, the magnitude, spatial distribution, and orientation of the opposing tensile forces remain poorly characterized.
View Article and Find Full Text PDFCell junctions are critical for cell adhesion and communication in epithelial tissues. It is evident that the cellular distribution, size, and architecture of cell junctions play a vital role in regulating function. These details of junction architecture have been challenging to elucidate in part due to the complexity and size of cell junctions.
View Article and Find Full Text PDFDesmosomes are macromolecular cell-cell junctions that provide adhesive strength in epithelial tissue. Desmosome function is inseparably linked to structure, and it is hypothesized that the arrangement, or order, of desmosomal cadherins in the intercellular space is critical for adhesive strength. However, due to desmosome size, molecular complexity, and dynamics, the role that order plays in adhesion is challenging to study.
View Article and Find Full Text PDFDesmosomes are macromolecular junctions responsible for providing strong cell-cell adhesion. Because of their size and molecular complexity, the precise ultrastructural organization of desmosomes is challenging to study. Here, we used direct stochastic optical reconstruction microscopy (dSTORM) to resolve individual plaque pairs for inner and outer dense plaque proteins.
View Article and Find Full Text PDFThe endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases.
View Article and Find Full Text PDF