Early methylmercury (MeHg) exposure can have long-lasting consequences likely arising from impaired developmental processes, the outcome of which has been exposed in several longitudinal studies of affected populations. Given the large number of newborns at an increased risk of learning disabilities associated with in utero MeHg exposure, it is important to study neurobehavioral alterations using ecologically valid and physiologically relevant models. This review highlights the benefits of using the MeHg drinking water exposure paradigm and outlines behavioral outcomes arising from this procedure in rodents.
View Article and Find Full Text PDFPurpose: Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40% to 70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory.
Experimental Design: Preweanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C.
Objective: With the survival rate of acute lymphoblastic leukemia (ALL) surpassing 90 percent within this decade, new research is emerging in the field of late effects. A review of the research investigating the relationship of treatment regimens for ALL to specific late effect deficits, underlying mechanisms, and possible remediation is warranted to support continued studies.
Methods: The clinical literature was briefly surveyed to describe the occurrence and topography of late effects, specifically neurocognitive deficits.