J Eukaryot Microbiol
January 2018
Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization.
View Article and Find Full Text PDFUse of inquiry-based research modules in the classroom has soared over recent years, largely in response to national calls for teaching that provides experience with scientific processes and methodologies. To increase the visibility of in-class studies among interested researchers and to strengthen their impact on student learning, we have extended the typical model of inquiry-based labs to include a means for targeted dissemination of student-generated discoveries. This initiative required: 1) creating a set of research-based lab activities with the potential to yield results that a particular scientific community would find useful and 2) developing a means for immediate sharing of student-generated results.
View Article and Find Full Text PDFTetrahymena has been a useful model in basic research in part due to the fact it is easy to grow in culture and exhibits a range of complex processes, all within a single cell. For these same reasons Tetrahymena has shown enormous potential as a teaching tool for fundamental principles of biology at multiple science education levels that can be integrated into K-12 classrooms and undergraduate and graduate college laboratory courses. These Tetrahymena-based teaching modules are inquiry-based experiences that are also effective at teaching scientific concepts, retaining students in science, and exciting students about the scientific process.
View Article and Find Full Text PDFBackground: The NAD(+)-dependent histone deacetylases, known as "sirtuins", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge.
View Article and Find Full Text PDFBackground: Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly.
View Article and Find Full Text PDFNewly synthesized histones are acetylated prior to their deposition into nucleosomes. Following nucleosome formation and positioning, they are rapidly deacetylated, an event that coincides with further maturation of the chromatin fiber. The histone deacetylases (HDACs) used for histone deposition and de novo chromatin formation are poorly understood.
View Article and Find Full Text PDFClass I histone deacetylases (HDACs) regulate DNA-templated processes such as transcription. They act both at specific loci and more generally across global chromatin, contributing to acetylation patterns that may underlie large-scale chromatin dynamics. Although hypoacetylation is correlated with highly condensed chromatin, little is known about the contribution of individual HDACs to chromatin condensation mechanisms.
View Article and Find Full Text PDFClass I histone deacetylases (HDACs) participate in the regulation of DNA-templated processes such as transcription and replication. Members of this class can act locally at specific sites, or they can act more globally, contributing to a baseline acetylation state, both of which actions may be important for genome maintenance and organization. We previously identified a macronuclear-specific class I HDAC in Tetrahymena thermophila called Thd1p, which is expressed early in the development of the macronucleus when it initially becomes transcriptionally active.
View Article and Find Full Text PDF