Publications by authors named "Emily A Mathews"

Objective: Motor vehicle crashes are a leading cause of injury and mortality for children. Mitigation of these injuries requires biofidelic anthropomorphic test devices (ATDs) to design and evaluate automotive safety systems. Effective countermeasures exist for frontal and near-side impacts but are limited for far-side impacts.

View Article and Find Full Text PDF

No electromyography (EMG) responses data exist of children exposed to dynamic impacts similar to automotive crashes, thereby, limiting active musculature representation in computational occupant biomechanics models. This study measured the surface EMG responses of three neck, one torso and one lower extremity muscles during low-speed frontal impact sled tests (average maximum acceleration: 3.8g; rise time: 58.

View Article and Find Full Text PDF

Debate exists in the automotive community regarding the validity of the pediatric ATD neck response and corresponding neck loads. Previous research has shown that the pediatric ATDs exhibit hyper-flexion and chin-to-chest contact resulting in overestimations of neck loads and neck injury criteria. Our previous work comparing the kinematics of the Hybrid III and Q-series 6 and 10-year-old ATDs to pediatric volunteers in low-speed frontal sled tests revealed decreased ATD cervical and thoracic spine excursions.

View Article and Find Full Text PDF

Far-side side impact loading of a seat belt restrained occupant has been shown to lead to torso slip out of the shoulder belt. A pretensioned seat belt may provide an effective countermeasure to torso rollout; however the effectiveness may vary with age due to increased flexibility of the pediatric spine compared to adults. To explore this effect, low-speed lateral (90°) and oblique (60°) sled tests were conducted using male human volunteers (20 subjects: 9-14 years old, 10 subjects: 18-30 years old), in which the crash pulse safety envelope was defined from an amusement park bumper-car impact.

View Article and Find Full Text PDF

Previous research has suggested that the rigid pediatric ATD spine may not adequately represent the relatively mobile, multi-segmented spine of the child and thus may lead to important differences in the head trajectory of the ATD relative to a human. Recently we compared the responses of size-matched child volunteers to the Hybrid III 6-year-old ATD in low-speed frontal sled tests, illustrating differences in head, spinal, and pelvic kinematics as well as seating environment reaction loads. This paper expands this line of work to include comparisons between size-matched restrained child volunteers to the Hybrid III 10-year-old and the Q-series 6 and 10-year-old ATDs tested in the same low speed frontal environment.

View Article and Find Full Text PDF

New neurons are continuously added throughout life to the dentate gyrus of the mammalian hippocampus. During embryonic and early postnatal development, the dentate gyrus is formed in an outside-in layering pattern that may extend through adulthood. In this work, we sought to quantify systematically the relative position of dentate granule cells generated at different ages.

View Article and Find Full Text PDF