Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. In the present study, we used 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detected transcription-dependent, replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs).
View Article and Find Full Text PDFPurpose: The cyclin-dependent kinase (CDK), CDK12, is mutated or amplified in multiple cancers. We previously described a subtype of prostate cancer characterized predominantly by frameshift, loss-of-function mutations in CDK12. This subtype exhibits aggressive clinical features.
View Article and Find Full Text PDFDespite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. Here, we use 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detect transcription-dependent replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs).
View Article and Find Full Text PDFPurpose: Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody.
View Article and Find Full Text PDFPurpose: With the improvement in overall survival with 177Lu-PSMA 617, radioligand therapy (RLT) is now a viable option for patients with metastatic castration-resistant prostate cancer (mCRPC). However, responses are variable, in part due to low PSMA expression in 30% of patients. Herein, we evaluated whether the cell surface protein CUB domain-containing protein 1 (CDCP1) can be exploited to treat mCRPC with RLT, including in PSMA-low subsets.
View Article and Find Full Text PDFSacituzumab govitecan (SG) is an antibody-drug conjugate (ADC) targeting TROP2, which has recently been approved for treatment-refractory metastatic urothelial cancer (UC). However, the variability of TROP2 expression across different bladder cancer (BC) subtypes, as well as after enfortumab vedotin (EV) exposure, remains unknown. Using gene expression data from four clinical cohorts with >1400 patient samples of muscle-invasive BC and a BC tissue microarray, we found that TROP2 mRNA and protein are highly expressed across basal, luminal, and stroma-rich subtypes, but depleted in the neuroendocrine subtype.
View Article and Find Full Text PDFGenomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets.
View Article and Find Full Text PDFPurpose: Enfortumab vedotin (EV) is an antibody-drug conjugate (ADC) targeting NECTIN4 (encoded by the gene) approved for treatment-refractory metastatic urothelial cancer. Factors that mediate sensitivity or resistance to EV are unknown. In this study, we sought to (i) examine heterogeneity of gene expression across molecular subtypes of bladder cancer and (ii) determine whether NECTIN4 expression mediates EV sensitivity or resistance.
View Article and Find Full Text PDFPurpose: We recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models.
Experimental Design: [Zr]DFO-YS5 was prepared and its binding affinity for CD46 was measured.