Bonded neodymium-iron-boron (NdFeB) permanent magnets in a paired configuration were successfully used to control mass transport in redox-based, magnetohydrodynamics (MHD). Control of fluid flow based on magnetic fields has potential for use in portable lab-on-a-chip (LOAC) and analytical devices. Bonded magnets, composed of magnetic powder and organic binder materials, are less expensive and easier to fabricate and pattern than electromagnets and sintered permanent magnets, which have been previously used in MHD studies on electrochemical systems.
View Article and Find Full Text PDFThe effect of an external magnetic field on linear scan anodic stripping voltammetry (ASV) in solutions of 10(-6)-10(-7) M concentrations of lead, cadmium, and copper at mercury films on glassy carbon electrodes has been investigated. A high concentration of Hg(2+) was added to the analyte solution to induce a large cathodic current during the deposition step. Therefore, a large Lorentz force from the net flux of charge through the magnetic field resulted in convection due to magnetohydrodynamics.
View Article and Find Full Text PDFThe biochemical and biophysical characteristics of Janus protein-tyrosine kinases (JAKs), which are essential early mediators of cytokine-initiated signal propagation, are virtually undefined. To facilitate the in vitro analysis of JAK-mediated catalysis, we substantially purified a soluble recombinant JAK2 and developed a novel means of quantifying JAK-catalyzed product formation. Glutathione-S-transferase fusion proteins containing active and inactive forms of rat Janus kinase 2 (GST:rJAK2 and GST:rJAK2(CA795)) were highly purified via affinity chromatography.
View Article and Find Full Text PDF