Publications by authors named "Emily A Aery Jones"

Article Synopsis
  • Animals, especially mammals, utilize grid cells in the medial entorhinal cortex to create a spatial map of their surroundings to help locate resources like food and shelter.
  • Researchers recorded over 15,000 grid cells in mice to examine how quickly these cells adapt their firing patterns in response to changes in the environment, finding that fixed visual landmarks provide stable input for these cells.
  • The study highlights a dual mechanism in the brain where fixed connections ensure quick adaptation to new environments, while plasticity in other brain regions allows for more precise navigation over time, suggesting a broader principle of flexible connectivity in neural networks.
View Article and Find Full Text PDF

Neurons can collectively represent the current sensory experience while an animal is exploring its environment or remote experiences while the animal is immobile. These remote representations can reflect learned associations and be required for learning. Neurons in the medial entorhinal cortex (MEC) reflect the animal's current location during movement, but little is known about what MEC neurons collectively represent during immobility.

View Article and Find Full Text PDF

Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated.

View Article and Find Full Text PDF

Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated.

View Article and Find Full Text PDF

Ketamine, a rapid-acting anesthetic and acute antidepressant, carries undesirable spatial cognition side effects including out-of-body experiences and spatial memory impairments. The neural substrates that underlie these alterations in spatial cognition however, remain incompletely understood. Here, we used electrophysiology and calcium imaging to examine ketamine's impacts on the medial entorhinal cortex and hippocampus, which contain neurons that encode an animal's spatial position, as mice navigated virtual reality and real world environments.

View Article and Find Full Text PDF

The full impact of apolipoprotein E4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on neuronal and network function remains unclear. We found hippocampal region-specific network hyperexcitability in young APOE4 knock-in (E4-KI) mice which predicted cognitive deficits at old age. Network hyperexcitability in young E4-KI mice was mediated by hippocampal region-specific subpopulations of smaller and hyperexcitable neurons that were eliminated by selective removal of neuronal APOE4.

View Article and Find Full Text PDF

Ketamine, a rapid-acting anesthetic and acute antidepressant, carries undesirable spatial cognition side effects including out-of-body experiences and spatial memory impairments. The neural substrates that underlie these alterations in spatial cognition however, remain incompletely understood. Here, we used electrophysiology and calcium imaging to examine ketamine's impacts on the medial entorhinal cortex and hippocampus, which contain neurons that encode an animal's spatial position, as mice navigated virtual reality and real world environments.

View Article and Find Full Text PDF

The brain can represent behaviorally relevant information through the firing of individual neurons as well as the coordinated firing of ensembles of neurons. Neurons in the hippocampus and associated cortical regions participate in a variety of types of ensembles to support navigation. These ensemble types include single cell codes, population codes, time-compressed sequences, behavioral sequences, and engrams.

View Article and Find Full Text PDF

The evident genetic, pathological, and clinical heterogeneity of Alzheimer's disease (AD) poses challenges for traditional drug development. We conducted a computational drug repurposing screen for drugs to treat apolipoprotein (apo) E4-related AD. We first established apoE-genotype-dependent transcriptomic signatures of AD by analyzing publicly-available human brain database.

View Article and Find Full Text PDF

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV) and somatostatin-expressing (SST), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood.

View Article and Find Full Text PDF