The structural and magnetic properties of a drop-cast film of flat CHBrCuO, a β-diketonato complex functionalized with bromine atoms, on a graphite surface are investigated using scanning tunneling microscopy, synchrotron X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. Experimental measurements reveal that the Cu-complexes preferentially lay flat on the graphite surface. The magnetic hysteresis loops show that the organic thin film remains paramagnetic at 2 K with an easy axis of magnetization perpendicular to the graphite surface and is therefore perpendicular to the plane of the Cu-complex skeleton.
View Article and Find Full Text PDFNearly localized moiré flat bands in momentum space, arising at particular twist angles, are the key to achieve correlated effects in transition-metal dichalcogenides. Here, we use angle-resolved photoemission spectroscopy (ARPES) to visualize the presence of a flat band near the Fermi level of van der Waals WSe/MoSeheterobilayer grown by molecular beam epitaxy. This flat band is localized near the Fermi level and has a width of several hundred meVs.
View Article and Find Full Text PDFWe perform synthesis of single-ion molecular magnets on an Ag(111) surface and characterize their morphology, chemistry, and magnetism. The first molecule we synthesize is TbPc to enable comparison with chemically synthesized and subsequently surface adsorbed species. We demonstrate the formation of TbPc with a yield close to 100% and show that on-surface synthesis leads to identical magnetic and morphological properties compared to the previously studied chemically synthesized species.
View Article and Find Full Text PDFThe magnetic properties of some single molecule magnets (SMM) on surfaces can be strongly modified by the molecular packing in nanometric films/aggregates or by interactions with the substrate, which affect the molecular orientation and geometry. Detailed investigations of the magnetism of thin SMM films and nanostructures are necessary for the development of spin-based molecular devices, however this task is challenged by the limited sensitivity of laboratory-based magnetometric techniques and often requires access to synchrotron light sources to perform surface sensitive X-ray magnetic circular dichroism (XMCD) investigations. Here we show that low-temperature magnetic force microscopy is an alternative powerful laboratory tool able to extract the field dependence of the magnetization and to identify areas of in-plane and perpendicular magnetic anisotropy in microarrays of the SMM terbium(III) bis-phthalocyaninato (TbPc) neutral complex grown as nanosized films on SiO and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and this is in agreement with data extracted from nonlocal XMCD measurements performed on homogeneous TbPc/PTCDA films.
View Article and Find Full Text PDFThe stacking order of multilayer graphene has a profound influence on its electronic properties. In particular, it has been predicted that a rhombohedral stacking sequence displays a very flat conducting surface state: the longer the sequence, the flatter the band. In such a flat band, the role of electron-electron correlation is enhanced, possibly resulting in high Tc superconductivity, magnetic order, or charge density wave order.
View Article and Find Full Text PDFNitrogen doping of graphene is of great interest for both fundamental research to explore the effect of dopants on a 2D electrical conductor and applications such as lithium storage, composites, and nanoelectronic devices. Here, we report on the modifications of the electronic properties of epitaxial graphene thanks to the introduction, during the growth, of nitrogen-atom substitution in the carbon honeycomb lattice. High-resolution transmission microscopy and low-energy electron microscopy investigations indicate that the nitrogen-doped graphene is uniform at large scale.
View Article and Find Full Text PDF