Publications by authors named "Emilio R G Sanabria"

Pharmacological induction of epileptiform activity is a complementary method to study the epileptogenic area in drug-resistant epileptic patients. Among the different activation methods, fentanyl derivatives (e.g.

View Article and Find Full Text PDF

The septal region of the brain consists of a heterogeneous population of GABAergic neurons that play an important role in the generation of hippocampal theta rhythms. While GABAergic neurons employ two isoforms of the enzyme glutamic acid decarboxylase (GAD) for the synthesis of GABA, distribution of GAD isoforms has not been investigated in the septum. Immunohistochemical techniques were used to investigate the expression of GAD enzymes in medial and lateral septum.

View Article and Find Full Text PDF

Hippocampal specimens resected to cure medically intractable temporal lobe epilepsy (TLE) provide a unique possibility to study functional consequences of morphological alterations. One intriguing alteration predominantly observed in cases of hippocampal sclerosis is an uncommon network of granule cells monosynaptically interconnected via aberrant supragranular mossy fibers. We investigated whether granule cell populations in slices from sclerotic and nonsclerotic hippocampi would develop ictaform activity when challenged by low-frequency hilar stimulation in the presence of elevated extracellular potassium concentration (10 and 12 mm) and whether the experimental activity differs according to the presence of aberrant mossy fibers.

View Article and Find Full Text PDF

Physical exercise and fitness programs in patients with epilepsy are still a matter of controversy. Effects of physical exercise in animals with epilepsy have been demonstrated. To further investigate the possible mechanisms by which physical activity interferes with epileptogenesis, the present work was aimed to study the effect of aerobic exercise on "in vitro" hippocampal electrophysiological parameters observed in rats submitted to the pilocarpine model of epilepsy.

View Article and Find Full Text PDF

We tested the hypothesis that endogenous N-acetylaspartylglutamate (NAAG) presynaptically inhibits glutamate release at mossy fiber-CA3 synapses. For this purpose, we made use of 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), an inhibitor of glutamate carboxypeptidase II [GCP II; also known as N-acetylated alpha-linked acidic dipeptidase (NAALADase)], the enzyme that hydrolyzes NAAG into N-acetylaspartate and glutamate. Application of 2-MPPA (1-20 microM) had no effect on intrinsic membrane properties of CA3 pyramidal neurons recorded in vitro in whole cell current- or voltage-clamp mode.

View Article and Find Full Text PDF

Purpose: Methylmalonic acid (MMA) inhibits succinate dehydrogenase (SDH) and beta-hydroxybutyrate dehydrogenase activity in vitro. Acute intrastriatal administration of MMA induces convulsions through glutamatergic mechanisms probably involving primary adenosine triphosphate (ATP) depletion and free radical generation. In this study we investigated whether the intrastriatal administration of MMA causes lipoperoxidation and alteration in Na+, K+-ATPase activity ex vivo and characterized the electrographic changes elicited by the intrastriatal administration of this organic acid.

View Article and Find Full Text PDF

Purpose: Mossy fiber sprouting (MFS) and synaptic reorganization in the dentate gyrus (DG) is considered one of the physiopathologic mechanisms in temporal lobe epilepsy. Supragranular MFS can be blocked by cycloheximide (CHX) without interfering with the genesis of spontaneous recurrent seizures. The aim of this study was to investigate electrophysiologic properties of the hippocampus in the CHX/pilocarpine (CHX/PILO) model as compared with the conventional PILO model.

View Article and Find Full Text PDF

Purpose: Clinical, neuropathological, and electrophysiological data have shown that limbic structures are involved in the pathogenesis of temporal lobe epilepsy (TLE). In most cases, limbic-originated seizures frequently spread to extrahippocampal areas. It is unclear whether such distant circuitries, especially the neocortex, exhibit abnormal electrophysiology as consequences of a chronic epileptogenic process.

View Article and Find Full Text PDF