Chiral allenes self-assembly following a cooperative mechanism into a supramolecular chiral aggregate consisting of two coaxial helices: the internal helix described by the allene stack and the external helix which consist in a 4-helix described by the four allene substituents. More precisely, this supramolecular aggregate possesses six axially chiral elements within its structure-the allene, the allene stack (internal helix) and the stacks of the four allene substituents (external 4-helix)-. Interestingly, slight variations in the magnitude of the tilting degree while keeping its P- or M- orientation (internal helix) can vary the orientation of the 4-axial motifs at the external helix.
View Article and Find Full Text PDFDynamic macroscopically chiral nanocomposites are prepared by combining silver nanoparticles (AgNPs) and dynamic helical poly(phenylacetylene)s (PPAs) bearing pendants functionalized with amino groups. These amino groups provide the nanocomposite with the ability to disperse in water along with high stability due to the interaction between the ammonium group and the AgNP. Moreover, the equilibrium between NH/NH produces a "blinking" contact between the PPA and the AgNPs, which allows total control of the dynamic helical behavior of the polymer.
View Article and Find Full Text PDFNanostructuration of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) depends on the secondary structure adopted by the polymer and the functional group used to connect the chiral pendant to the PPA backbone. Thus, while PPAs with dynamic and flexible scaffolds (para- and meta-substituted, ω<165°) generate by nanoprecipitation low polydisperse nanospheres with controllable size at different acetone/water mixtures, those with a quasi-static behavior and the presence of an extended, almost planar structure (ortho-substituted, ω>165°), aggregate into a mixture of spherical and oval nanostructures whose size is not controlled. Photostability studies show that poly(phenylacetylene) particles are more stable to light irradiation than when dissolved macromolecularly.
View Article and Find Full Text PDFChiral metallo-supramolecular fibres can be easily obtained by mixing a chloroform solution of a phenylacetylene monomer (PA) that bears a chiral sulfoxide group as pendant, with different equivalents of a methanolic solution of AgClO . Thus, while the PA is found molecularly dissolved in chloroform, the addition of Ag ions induce its aggregation through the formation of an axially chiral metallo-supramolecular aggregate with high thermal stable properties. In this case, the ability of the metal ion to coordinate the PA triple bond, combined with the argentophilicity of the metal ion and the planarity of the phenylacetylene drives to the formation of a helical coordination polymer, whose P or M axial chirality is determined by the chirality of the sulfoxide used as substituent of the PA.
View Article and Find Full Text PDFMolecular switches, supramolecular chemistry, and polymers can be combined to create stimuli-responsive multichiral materials. Therefore, by acting on the extended/bent conformational composition of an achiral arm, it is possible to create a macromolecular gear, where different supramolecular interactions can be activated/deactivated to control the helical sense of a polymer containing up to five different chiral axial motifs. For this, a chiral allene with a flexible achiral arm was introduced as a pendant in poly(phenylacetylene).
View Article and Find Full Text PDFSynthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates).
View Article and Find Full Text PDFDynamic P/M (plus/minus) helical memory in chiral dissymmetric poly(diphenylacetylene)s (PDPA) is shown using a PDPA that bears the benzamide of (L)-alanine methyl ester as pendant. For a single chiral polymer, it is possible to obtain either P or M helical structures in a specific solvent without the presence of any chiral external stimuli. To do that, it is necessary to combine the conformational control at the pendant group with a high steric hindrance at the backbone.
View Article and Find Full Text PDFSupramolecular and covalent polymers share multiple structural effects such as communication mechanisms among monomer repeating units, which are related to their axial helical structure. Herein, a unique multi-helical material combining information from both metallosupramolecular and covalent helical polymers is presented. In this system, the helical structure described by the poly(acetylene) (PA) backbone (cis-cisoidal, cis-transoidal) guides the pendant groups in a fashion where a tilting degree emerges between a pendant and the adjacent ones.
View Article and Find Full Text PDFHelix inversion in chiral dynamic helical polymers is usually achieved by conformational changes at the pendant groups induced through external stimuli. Herein, a different mechanism of helix inversion in poly(phenylacetylene)s (PPAs) is presented, based on the activation/deactivation of supramolecular interactions. We prepared poly[(allenylethynylenephenylene)acetylene]s (PAEPAs) in which the pendant groups are conformationally locked chiral allenes.
View Article and Find Full Text PDFThe helix reversal is a structural motif found in helical polymers in the solid state, but whose existence is elusive in solution. Herein, we have shown how the photochemical electrocyclization (PEC) of poly(phenylacetylene)s (PPAs) can be used to determine not only the presence of helix reversals in polymer solution, but also to estimate the screw sense excess. To perform these studies, we used a library of well folded PPAs and different copolymers series made by enantiomeric comonomers that show chiral conflict effect.
View Article and Find Full Text PDFChiral information transmission in helical polymers bearing multi-chiral pendant groups is usually determined by the absolute configuration of the first chiral center. The second chiral residue usually has low-to-null influence in the macromolecular handedness of the polymer, due to its remote position respect to the polyene main chain. Here, we demonstrate how the stimuli responsive properties of diastereomeric polymers, obtained by changing the absolute configuration of the second chiral center, are different due to the unlike properties of diastereoisomers.
View Article and Find Full Text PDFIn helical polymers, helical sense induction is usually commanded by teleinduction mechanism, where the largest substituent of the chiral residue directly attached to the main chain is the one that commands the helical sense. In this work, different helical structures with different helical senses are induced in a helical polymer [poly-(phenylacetylene)] when the conformational composition of two different dihedral angles of a pendant group with more than two chiral residues is tamed. Thus, while the dihedral angle at chiral residue 1 [(R)- or (S)-alanine], attached to the backbone, produces an extended or bent conformation in the pendant resulting in two scaffolds with different stretching degree, the second dihedral angle at chiral residue 2 [(R)- or (S)-methoxyphenylacetamide] places the substituents of this chiral center in a different spatial orientation, originating opposite helical senses at the polymer that are induced through a total control of the "chiral overpass effect".
View Article and Find Full Text PDFA helical copoly(phenylacetylene) that follows a dynamic chiral accord effect has been designed to further synthesize dynamic chiral nanocomposites. Its two pendants are benzamides of (L)-methionine methyl ester [(L)-1, 20%] and (L)-alanine methyl ester [(L)-2, 80%], the former being responsible for binding the copolymer to metallic nanoparticles (MNPs, M = Au, Ag) the thioether. The two chiral comonomers have analogous dynamic behavior, and therefore, the copolymer-poly-[(L)-1--(L)-2]-adopts a preferred helical sense that can be amplified or inverted by stimuli acting simultaneously on both pendants.
View Article and Find Full Text PDFHelical polymers such as poly(phenylacetylene)s (PPAs) are interesting materials due to the possibility of tuning their helical scaffold (sense and elongation) once they have been prepared and by the presence of external stimuli. The main limitation in the application of PPAs is their poor photostability. These polymers degrade under visible light exposure through a photochemical electrocyclization process.
View Article and Find Full Text PDFThe secondary structure of a dissymmetric and chiral poly(diphenylacetylene) (PDPA) is elucidated by combining the data from NMR experiments (regioregular head to tail structure), Raman and IR studies (E configuration of the polyene double bonds), and high-resolution AFM images (helical pitch, packing angle and orientation of the external helix). As a result, an E-transoidal polyene backbone describing three coaxial helices is obtained. Theoretical electronic circular dichroism (ECD) studies of the structure show a good correspondence between experimental and theoretical data and allow one to decipher that the first Cotton band is generated by the poly(diphenylacetylene) core and not only by the polyene backbone.
View Article and Find Full Text PDFSupramolecular and covalent polymers share multiple structural effects such as chiral amplification, helical inversion, sergeants and soldiers, or majority rules, among others. These features are related to the axial helical structure found in both types of materials, which are responsible for their properties. Herein a novel material combining information and characteristics from both fields of helical polymers, supramolecular (oligo(-phenyleneethynylene) (OPE)) and covalent (poly(acetylene) (PA)), is presented.
View Article and Find Full Text PDFThe helical sense control of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) is greatly affected when they are conjugated to AuNPs through a strong thiol-Au connection, which restricts conformational changes at the polymer. Thus, the classical thiol-MNP bonds must be replaced by weaker ones, such as supramolecular amide-Au interactions. A straightforward preparation of the PPA-Au nanocomposite by reduction of a preformed PPA-Au complex cannot be used due to a redox reaction between the two components of the complex which degrades the polymer.
View Article and Find Full Text PDFSupramolecular helices that arise from the self-assembly of small organic molecules via non-covalent interactions play an important role in the structure and properties of the corresponding materials. Here we study the supramolecular helical aggregation of oligo(phenyleneethynylene) monomers from a theoretical point of view, always guiding the studies with experimentally available data. In this way, by systematically increasing the number of monomer units, optimized n-mer geometries are obtained along with the corresponding absorption and circular dichroism spectra.
View Article and Find Full Text PDFA chiral harvesting transmission mechanism is described in poly(acetylene)s bearing oligo(-phenyleneethynylene)s (OPEs) used as rigid achiral spacers and derivatized with chiral pendant groups. The chiral moieties induce a positive or negative tilting degree in the stacking of OPE units along the polymer structure, which is further harvested by the polyene backbone adopting either a or helix.
View Article and Find Full Text PDFA complex aggregation pathway towards two diastereomeric P and M supramolecular helices arises from the aggregation of a short, chiral, and rigid oligo(phenyleneethynylene) [OPE, (S)-1]. Thus, while Agg aggregate is obtained when a DCM solution of (S)-1 is diluted with MCH at room temperature, Agg aggregate is generated only after a slow heating (353 K)/cooling (273 K) process. Interestingly, during Agg formation (mechanism 1), short P chain oligomers are produced, which have a great tendency to aggregate in plane, yielding brick-like nanostructures that halt the aggregation process.
View Article and Find Full Text PDFPhotochemical electrocyclization of poly(phenylacetylene)s (PPAs) is used for the structural elucidation of a polyene backbone. This method not only allows classification of PPAs in cis-cisoidal (ω <90°) or cis-transoidal structures (ω >90°), but also approximating ω . A PPA solution is illuminated with visible light and monitoring the photochemical electrocyclization of the PPA helix by measuring the ECD spectra at different times.
View Article and Find Full Text PDFDifferent communication mechanisms can be switched within a copolymer by acting on the conformational composition of the components and their chirality. Thus, a sergeant and soldiers effect is produced in two diastereomeric copolymer series, poly[(S)-1 -co-(S)-2 ] and poly[(R)-1 -co-(S)-2 ], owing to the presence in chloroform of a preferred conformation in (S)-2, and a conformational equilibrium in 1, where a P helix is induced independently of the absolute configuration of the soldier. In THF, the presence of a conformational equilibrium at the pendants of the two components produces a reciprocal chiral enhancement effect by copolymerization of the two monomers, while in DMF, a third chiral to chiral communication switch is produced due to the presence of a single conformer at the pendant group of the two components.
View Article and Find Full Text PDFHerein, macromolecular gears composed of helical poly(phenylacetylenes) (PPAs) bearing short oligopeptides as pendant groups are described, in which the two structural motifs (framework and substituents) are combined. These gears are obtained by polymerization of the acetylene groups introduced at the C-terminus of short oligopeptides formed by achiral (Aib) units (n=1-3) derivatized at the N-terminus by a single enantiomer (R or S) of α-methoxy-α-trifluoromethylphenylacetic acid (MTPA, Mosher's reagent). The chiral information of the MTPA is transmitted to the achiral Aib fragments and, through either chiral tele-induction and/or chiral harvesting mechanisms, is further transferred to the polyene backbones, which adopt preferentially P or M helical senses.
View Article and Find Full Text PDFPoly(phenylacetylene)s are a family of helical polymers constituted by conjugated double bonds. Raman spectra of these polymers show a structural fingerprint of the polyene backbone which, in combination with its helical orientation, makes them good candidates to be studied by Raman optical activity (ROA). Four different well-known poly(phenylacetylene)s adopting different scaffolds and ten different helical senses have been prepared.
View Article and Find Full Text PDFA novel type of stimuli-responsive dynamic helical polymer-metal nanoparticle nanocomposite formed by a helical poly(phenylacetylene) (PPA) combined with gold nanoparticles (AuNPs) is described. Thus, several PPA copolymers containing the ethynyl-4-benzamide of (S)-phenylglycine methyl ester (M1) to dictate the helical structure/sense of the copolymer, and the ethynyl-4-benzamide of the 11-((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)undecane-1-thiol (M2) to link the copolymer to the AuNPs are prepared. Different morphologies of these nanocomposites were obtained by considering the thiol ratio and the self-assembly properties of the PPA, which generates from dispersed AuNPs to fibre-like structures.
View Article and Find Full Text PDF