Publications by authors named "Emilio Padoa Schioppa"

Urban trees are crucial in delivering essential ecosystem services, including air pollution mitigation. This service is influenced by plant associated microbiomes, which can degrade hydrocarbons, support tree health, and influence ecological processes. Yet, our understanding of tree microbiomes remains limited, thus affecting our ability to assess and quantify the ecosystem services provided by trees as complex systems.

View Article and Find Full Text PDF
Article Synopsis
  • Forest ecosystems like Ticino Park are important for biodiversity but are threatened by climate change and human activities.
  • This study uses Sentinel-2 satellite imagery from 2017 to 2022 to monitor drought-induced changes in forest traits, particularly focusing on leaf area index (LAI), canopy chlorophyll content (CCC), and canopy water content (CWC).
  • Findings reveal that variations in these traits correlate with forest types, showing that pine and black cherry trees are more stressed by drought, while species like black alder and chestnut are less affected, emphasizing the need for detailed species information in forest management.
View Article and Find Full Text PDF

Plants and phyllosphere microorganisms may effectively contribute to reducing air pollution in cities through the adsorption and biodegradation of pollutants onto leaves. In this work, during all seasons, we sampled atmospheric particulate matter (PM) and leaves of southern magnolia Magnolia grandiflora and deodar cedar Cedrus deodara, two evergreen plant species widespread in the urban area of Milan where the study was carried out. We then quantified Polycyclic Aromatic Hydrocarbons (PAHs) both in PM and on leaves and used sequencing of 16S rRNA gene, shotgun metagenomics and qPCR analyses to investigate the microbial communities hosted by the sampled leaves.

View Article and Find Full Text PDF

The extent to which closely related species share similar niches remains highly debated. Ecological niches are increasingly analysed by combining distribution records with broad-scale climatic variables, but interactions between species and their environment often occur at fine scales. The idea that macroscale analyses correctly represent fine-scale processes relies on the assumption that average climatic variables are meaningful predictors of processes determining species persistence, but tests of this hypothesis are scarce.

View Article and Find Full Text PDF

Plants and their associated bacteria have been suggested to play a role in air pollution mitigation, especially in urban areas. Particularly, epiphytic bacteria might be able to degrade atmospheric hydrocarbons. However, phyllospheric bacterial communities are highly variable depending on several factors, e.

View Article and Find Full Text PDF

Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species.

View Article and Find Full Text PDF

Semiaquatic organisms depend on the features of both water bodies and landscapes; the interplay between terrestrial and aquatic systems might influence the semiaquatic communities, determining the scale at which management would be more effective. However, the consequences of such interplay are not frequently quantified, particularly at the community level. We analyzed the distribution of amphibians to evaluate whether the influence of landscape features on freshwater ecosystems can have indirect consequences at both the species and community level.

View Article and Find Full Text PDF

Studies on riparian buffers have usually focused on the amount of land needed as habitat for the terrestrial life stages of semiaquatic species. Nevertheless, the landscape surrounding wetlands is also important for other key processes, such as dispersal and the dynamics of metapopulations. Multiple elements that influence these processes should therefore be considered in the delineation of buffers.

View Article and Find Full Text PDF