Publications by authors named "Emilio Mendiola"

Intracardiac hemodynamics plays a crucial role in the onset and development of cardiac and valvular diseases. Simulations of blood flow in the left ventricle (LV) have provided valuable insight into assessing LV hemodynamics. While fully coupled fluid-solid modelings of the LV remain challenging due to the complex passive-active behavior of the LV wall myocardium, the integration of imaging-driven quantification of structural motion with computational fluid dynamics (CFD) modeling in the LV holds the promise of feasible and clinically translatable characterization of patient-specific LV hemodynamics.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is defined as an elevation in the right ventricle (RV) afterload, characterized by increased hemodynamic pressure in the main pulmonary artery (PA). Elevations in RV afterload increase RV wall stress, resulting in RV remodeling and potentially RV failure. From a biomechanical standpoint, the primary drivers for RV afterload elevations include increases in pulmonary vascular resistance (PVR) in the distal vasculature and decreases in vessel compliance in the proximal PA.

View Article and Find Full Text PDF

The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms.

View Article and Find Full Text PDF

The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms.

View Article and Find Full Text PDF

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients.

View Article and Find Full Text PDF

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients.

View Article and Find Full Text PDF

Left ventricular diastolic dysfunction (LVDD) is a group of diseases that adversely affect the passive phase of the cardiac cycle and can lead to heart failure. While left ventricular end-diastolic pressure (LVEDP) is a valuable prognostic measure in LVDD patients, traditional invasive methods of measuring LVEDP present risks and limitations, highlighting the need for alternative approaches. This paper investigates the possibility of measuring LVEDP non-invasively using inverse in-silico modeling.

View Article and Find Full Text PDF

Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject.

View Article and Find Full Text PDF

The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function.

View Article and Find Full Text PDF

Myocardial infarction (MI) results in cardiac myocyte death and often initiates the formation of a fibrotic scar in the myocardium surrounded by a border zone. Myocyte loss and collagen-rich scar tissue heavily influence the biomechanical behavior of the myocardium which could lead to various cardiac diseases such as systolic heart failure and arrhythmias. Knowledge of how myocyte and collagen micro-architecture changes affect the passive mechanical behavior of the border zone remains limited.

View Article and Find Full Text PDF

Impaired relaxation of cardiomyocytes leads to diastolic dysfunction in the left ventricle. Relaxation velocity is regulated in part by intracellular calcium (Ca) cycling, and slower outflux of Ca during diastole translates to reduced relaxation velocity of sarcomeres. Sarcomere length transient and intracellular calcium kinetics are integral parts of characterizing the relaxation behavior of the myocardium.

View Article and Find Full Text PDF

We have previously demonstrated the importance of myofiber-collagen mechanical interactions in modeling the passive mechanical behavior of right ventricle free wall (RVFW) myocardium. To gain deeper insights into these coupling mechanisms, we developed a high-fidelity, micro-anatomically realistic 3D finite element model of right ventricle free wall (RVFW) myocardium by combining high-resolution imaging and supercomputer-based simulations. We first developed a representative tissue element (RTE) model at the sub-tissue scale by specializing the hyperelastic anisotropic structurally-based constitutive relations for myofibers and ECM collagen, and equi-biaxial and non-equibiaxial loading conditions were simulated using the open-source software FEniCS to compute the effective stress-strain response of the RTE.

View Article and Find Full Text PDF

The myocardium possesses an intricately designed microarchitecture to produce an optimal cardiac contraction. The contractile behavior of the heart is generated at the sarcomere level and travels across several length scales to manifest as the systolic function at the organ level. While passive myocardial behavior has been studied extensively, the translation of active tension produced at the fiber level to the organ-level function is not well understood.

View Article and Find Full Text PDF

Background: Global indices of right ventricle (RV) function provide limited insights into mechanisms underlying RV remodeling in pulmonary hypertension (PH). While RV myocardial architectural remodeling has been observed in PH, its effect on RV adaptation is poorly understood.

Methods: Hemodynamic assessments were performed in 2 rodent models of PH.

View Article and Find Full Text PDF

Myocardial infarction (MI) results in cardiac myocyte death and the formation of a fibrotic scar in the left ventricular free wall (LVFW). Following an acute MI, LVFW remodeling takes place consisting of several alterations in the structure and properties of cellular and extracellular components with a heterogeneous pattern across the LVFW. The normal function of the heart is strongly influenced by the passive and active biomechanical behavior of the LVFW, and progressive myocardial structural remodeling can have a detrimental effect on both diastolic and systolic functions of the LV leading to heart failure.

View Article and Find Full Text PDF

The pericardium is a thin connective tissue membrane that surrounds the heart and is an integral regulatory component of cardiopulmonary performance. Pathological growth and remodeling of the right ventricle (RV) stemming from structural heart diseases are thought to include a significant role of the pericardium, but its exact role remains unclear. The objective of this study was to investigate potential biomechanical adaptations of the pericardium in response to pulmonary hypertension and their effects on heart behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The study emphasizes the importance of accurately estimating the mechanical properties of the heart muscle (myocardium) for diagnosing and predicting heart disease, particularly in cases like heart failure.
  • Current methods for this estimation are complex and time-intensive, involving intricate computer simulations of the heart's structure.
  • The authors introduce a machine learning model that simplifies this process by directly predicting heart properties from easily obtainable geometric and hemodynamic data, showing promising results with a dataset generated from various heart geometries and pressure-volume measurements.
View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) imposes a pressure overload on the right ventricle (RV), leading to myofiber hypertrophy and remodeling of the extracellular collagen fiber network. While the macroscopic behavior of healthy and post-PAH RV free wall (RVFW) tissue has been studied previously, the mechanical microenvironment that drives remodeling events in the myofibers and the extracellular matrix (ECM) remains largely unexplored. We hypothesize that multiscale computational modeling of the heart, linking cellular-scale events to tissue-scale behavior, can improve our understanding of cardiac remodeling and better identify therapeutic targets.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) exerts substantial pressure overload on the right ventricle (RV), inducing RV remodeling and myocardial tissue adaptation often leading to right heart failure. The associated RV free wall (RVFW) adaptation involves myocardial hypertrophy, augmented intrinsic contractility, collagen fibrosis, and structural remodeling in an attempt to cope with pressure overload. If RVFW adaptation cannot maintain the RV stroke volume (SV), RV dilation will prevail as an exit mechanism, which usually decompensates RV function, leading to RV failure.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement via the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling.

View Article and Find Full Text PDF