Publications by authors named "Emilio Martinez Nunez"

We present the systematic exploration of various potential energy surfaces for systems with CH ( = 0, 1, 2, or 3) empirical formula using an automatic search approach. The primary objective of this study is to identify reaction pathways that lead to the creation of benzene, -benzyne, and other rings. These pathways initiate with a barrierless recombination reaction and involve subsequent isomerization reactions with submerged transition states until the final product is reached.

View Article and Find Full Text PDF

We present the detailed topographical characterisation (stationary points and minimum energy paths connecting them) of the full dimensional (81D) intermolecular potential energy surface associated with the non-covalent interactions between the NO radical and the pyrene (CH) molecule. The whole procedure is (quasi) fully automated. We have used our recent algorithm vdW-TSSCDS as implemented on the freely-available AutoMekin software package.

View Article and Find Full Text PDF

Acetonitrile (CHCN) is present in the interstellar medium (ISM) in a variety of environments. However, at the ultracold temperatures of the ISM, radical-molecule reactions are not widely investigated because of the experimental handicap of getting organic molecules in the gas phase by conventional techniques. The CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique solves this problem.

View Article and Find Full Text PDF

Vinyl alcohol (VyA) and cyanide (CN) radicals are relatively abundant in the interstellar medium (ISM). VyA is the enolic tautomer of acetaldehyde and has two low-lying conformers, characterized by the or placement of hydroxyl hydrogen with respect to the double bond. In this paper, we present a gas-phase model of the barrierless reactions of both VyA's conformers with CN employing accurate quantum chemical computations in the framework of a master equation approach based on the transition state theory.

View Article and Find Full Text PDF

Our automated reaction discovery program, AutoMeKin, has been utilized to investigate the formation of glycolonitrile (HOCHCN) in the gas phase under the low temperatures of the interstellar medium (ISM). The feasibility of a proposed pathway depends on the absence of barriers above the energy of reactants and the availability of the suggested precursors in the ISM. Based on these criteria, several radical-radical reactions and a radical-molecule reaction have been identified as viable formation routes in the ISM.

View Article and Find Full Text PDF

Different machine learning (ML) models are proposed in the present work to predict density functional theory-quality barrier heights (BHs) from semiempirical quantum mechanical (SQM) calculations. The ML models include a multitask deep neural network, gradient-boosted trees by means of the XGBoost interface, and Gaussian process regression. The obtained mean absolute errors are similar to those of previous models considering the same number of data points.

View Article and Find Full Text PDF

The level of detail attained in the computational description of reaction mechanisms can be vastly improved through tools for automated chemical space exploration, particularly for systems of small to medium size. Under this approach, the unimolecular decomposition landscape for indole was explored through the automated reaction mechanism discovery program AutoMeKin. Nevertheless, the sheer complexity of the obtained mechanisms might be a hindrance regarding their chemical interpretation.

View Article and Find Full Text PDF

Nitrogen-bearing molecules, like methylamine (CHNH), can be the building blocks of amino acids in the interstellar medium (ISM). At the ultralow temperatures of the ISM, it is important to know its gas-phase reactivity towards interstellar radicals and the products formed. In this work, the kinetics of the OH + CHNH reaction was experimentally and theoretically investigated at low- and high-pressure limits (LPL and HPL) between 10 and 1000 K.

View Article and Find Full Text PDF

The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of (major) and (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections.

View Article and Find Full Text PDF

A new approach is presented to improve the performance of semiempirical quantum mechanical (SQM) methods in the description of noncovalent interactions. To show the strategy, the PM6 Hamiltonian was selected, although, in general, the procedure can be applied to other semiempirical Hamiltonians and to different methodologies. A set of small molecules were selected as representative of various functional groups, and intermolecular potential energy curves (IPECs) were evaluated for the most relevant orientations of interacting molecular pairs.

View Article and Find Full Text PDF

AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem.

View Article and Find Full Text PDF

In many scientific fields, there is an interest in understanding the way in which chemical networks evolve. The chemical networks which researchers focus upon have become increasingly complex, and this has motivated the development of automated methods for exploring chemical reactivity or conformational change in a "black-box" manner, harnessing modern computing resources to automate mechanism discovery. In this work, we present a new approach to automated mechanism generation which couples molecular dynamics and statistical rate theory to automatically find kinetically important reactions and then solve the time evolution of the species in the evolving network.

View Article and Find Full Text PDF

Clocking of electronically and vibrationally state-resolved channels of the fast photodissociation of CHI in the A-band is re-examined in a combined experimental and theoretical study. Experimentally, a femtosecond pump-probe scheme is employed in the modality of resonant probing by resonance enhanced multiphoton ionization (REMPI) of the methyl fragment in different vibrational states and detection through fragment velocity map ion (VMI) imaging as a function of the time delay. We revisit excitation to the center of the A-band at 268 nm and report new results for excitation to the blue of the band center at 243 nm.

View Article and Find Full Text PDF

We present Specific Reaction Parameter Multigrid POTFIT (SRP-MGPF), an automated methodology for the generation of global potential energy surfaces (PES), molecular properties surfaces, e.g., dipole, polarizabilities, etc.

View Article and Find Full Text PDF

Low-energy collision-induced dissociation (CID) of deprotonated l-cysteine S-sulfate, [cysS-SO], delivered in the gas phase by electrospray ionization, has been found to provide a means to form deprotonated l-cysteine sulfenic acid, which is a fleeting intermediate in biological media. The reaction mechanism underlying this process is the focus of the present contribution. At the same time, other novel species are formed, which were not observed in previous experiments.

View Article and Find Full Text PDF

The tsscds method, recently developed in our group, discovers chemical reaction mechanisms with minimal human intervention. It employs accelerated molecular dynamics, spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction paths and to solve the kinetics at the experimental conditions. In the present review, its application to solve mechanistic/kinetics problems in different research areas will be presented.

View Article and Find Full Text PDF

A new software, called tsscds2018, has been developed to discover reaction mechanisms and solve the kinetics in a fully automated fashion. The program employs algorithms based on Graph Theory to find transition state (TS) geometries from accelerated semiempirical dynamics simulations carried out with MOPAC2016. Then, the TSs are connected to the corresponding minima and the reaction network is obtained.

View Article and Find Full Text PDF

The potential energy surface involved in the thermal decomposition of 1-propanol radicals was investigated in detail using automated codes (tsscds2018 and Q2DTor). From the predicted elementary reactions, a relevant reaction network was constructed to study the decomposition at temperatures in the range 1000-2000 K. Specifically, this relevant network comprises 18 conformational reaction channels (CRCs), which in general exhibit a large wealth of conformers of reactants and transition states.

View Article and Find Full Text PDF

To understand and simulate the dynamics behavior of the title reaction, QCT calculations were performed on a recently developed global analytical potential energy surface, PES-2017. These calculations combine the classical description of the dynamics with pseudoquantization in the reactants and products to perform a theoretical/experimental comparison on the same footing. Thus, in the products a series of constraints are included to analyze the HCl(v = 0,j) product, which is experimentally detected.

View Article and Find Full Text PDF

In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions.

View Article and Find Full Text PDF

The effect of the metal ion and ligand design on the enantioselectivity and linkage isomerization of neutral cobalt and zinc bisthiosemicarbazone metallohelicates has been investigated in this work. The electrochemical synthesis has afforded the enantioselective formation of chirally pure cobalt helicates, and the ΛΛ isomer of a single enantiomer has been crystallized as only product for the cobalt methyl-substituted thiosemicarbazone helicate. Interestingly linkage isomers have been formed from zinc ethyl-substituted thiosemicarbazone helicate enantiomers for the first time.

View Article and Find Full Text PDF

The kinetics of the reaction of methanol with hydroxyl radicals is revisited in light of the reported new kinetic data, measured in cold expansion beams. The rate constants exhibit an approximately 10(2)-fold increase when the temperature decreases from 200 to 50 K, a result that cannot be fully explained by tunneling, as we confirm by new calculations. These calculations also show that methanol dimers are much more reactive to hydroxyl than monomers and imply that a dimer concentration of about 30% of the equilibrium concentration can account quantitatively for the observed rates.

View Article and Find Full Text PDF

The potential energy surface of protonated uracil has been explored by an automated transition state search procedure, resulting in the finding of 1398 stationary points and 751 reactive channels, which can be categorized into isomerizations between pairs of isomers, unimolecular fragmentations and bimolecular reactions. The use of statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory and Kinetic Monte Carlo (KMC) simulations allowed us to determine the relative abundances of each fragmentation channel as a function of the ion's internal energy. The KMC/RRKM product abundances are compared with novel mass spectrometry (MS) experiments in the collision energy range 1-6 eV.

View Article and Find Full Text PDF

The ground electronic state potential energy surface of acryloyl chloride, CH2CHC(O)Cl, has been mapped using an automated transition state search procedure. A total of 174 minima, 527 TSs, and 20 different dissociation channels have been found. Among others, three novel HCl elimination pathways, namely, a five-center mechanism and two three-body dissociations (leading to CO + HCl + HCCH) have been discovered.

View Article and Find Full Text PDF