The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle.
View Article and Find Full Text PDFSemin Cell Dev Biol
April 2024
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination.
View Article and Find Full Text PDFSeveral aspects of telomere biology are regulated by the telomeric repeat-containing RNA TERRA. While TERRA expression is conserved through evolution, species-specific mechanisms regulate its biogenesis and function. Here we report on the expression of TERRA in Caenorhabditis elegans.
View Article and Find Full Text PDFThe telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues.
View Article and Find Full Text PDFTelomeric repeat-containing RNA (TERRA) is a long non-coding RNA transcribed from telomeres that plays key roles in telomere maintenance. A fraction of TERRA is polyadenylated, and the presence of the poly(A) tail influences TERRA localization and stability. However, the mechanisms of TERRA biogenesis remain mostly elusive.
View Article and Find Full Text PDFNon-coding RNAs are transcribed from telomeres and the telomeric repeat-containing RNAs () are implicated in telomere homeostasis and in cancer. In this study, we aimed to assess in hepatocellular carcinoma (HCC) the cellular and extracellular expression of , the telomerase RNA subunit () and the telomerase catalytic subunit (). We determined by qPCR the expression level of 1_2_10_13q, 15q, XpYp, and of mRNA in HCC tissues and in the plasma of HCC patients.
View Article and Find Full Text PDFLong noncoding (lnc)RNAs derived from telomeres, the ends of linear eukaryotic chromosomes, help to maintain telomere length and stability by multiple means, including regulation of telomerase activity and recombination-based telomere maintenance. New findings in yeast promote a model in which telomere attachment to the nuclear envelope regulates telomere transcription and maintenance.
View Article and Find Full Text PDF: The up-regulation of a telomere maintenance mechanism (TMM) is a common feature of cancer cells and a hallmark of cancer. Routine methods for detecting TMMs in tumor samples are still missing, whereas telomerase targeting treatments are becoming available. In paediatric cancers, alternative lengthening of telomeres (ALT) is found in a subset of sarcomas and malignant brain tumors.
View Article and Find Full Text PDFThe activation of a telomere maintenance mechanism (TMM) is an essential step in cancer progression to escape replicative senescence and apoptosis. Alternative lengthening of telomeres (ALT) is found in a subset of malignant brain tumors with poor outcomes. Here, we describe a model of juvenile zebrafish brain tumor that progressively develops ALT.
View Article and Find Full Text PDFThe finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres.
View Article and Find Full Text PDFTelomeres are transcribed, giving rise to telomeric repeat-containing long noncoding RNAs (TERRA), which have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. Recent findings revealed that TERRA molecules also interact with internal chromosomal regions to regulate gene expression in mouse embryonic stem (ES) cells. In line with this evidence, RNA fluorescence in situ hybridization (RNA-FISH) analyses have shown that only a subset of TERRA transcripts localize at chromosome ends.
View Article and Find Full Text PDFTelomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis.
View Article and Find Full Text PDFTelomeres are maintained in a heterochromatic state that represses transcription of subtelomeric genes, a phenomenon known as telomere position effect. Nevertheless, telomeric DNA is actively transcribed, leading to the synthesis of telomeric repeat-containing noncoding RNA or TERRA. This nuclear noncoding RNA has been proposed to play important roles at telomeres, regulating their silencing, capping, repair and elongation by telomerase.
View Article and Find Full Text PDFSMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres.
View Article and Find Full Text PDFTelomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
December 2014
Telomeres are nucleoprotein structures that cap the ends of eukaryotic chromosomes, protecting them from degradation and activation of DNA damage response. For this reason, functional telomeres are vital to genome stability. For years, telomeres were assumed to be transcriptionally silent, because of their heterochromatic state.
View Article and Find Full Text PDFElongation of a short telomere depends on the action of multiple telomerase molecules, which are visible as telomerase RNA foci or clusters associated with telomeres in yeast and mammalian cells. How several telomerase molecules act on a single short telomere is unknown. Herein, we report that the telomeric noncoding RNA TERRA is involved in the nucleation of telomerase molecules into clusters prior to their recruitment at a short telomere.
View Article and Find Full Text PDFMicro-RNA (miR) 199b-5p targets Hes1 in medulloblastoma, one of the downstream effectors of both the canonical Notch and noncanonical Sonic Hedgehog pathways. In medulloblastoma patients, expression of miR-199b-5p is significantly decreased in metastatic cases, thus suggesting a downregulation mechanism. We studied this mechanism, which is mediated mostly by Hes1 and epigenetic promoter modifications.
View Article and Find Full Text PDFThe telomerase, which is composed of both protein and RNA, maintains genome stability by replenishing telomeric repeats at the ends of chromosomes. Here, we use live-cell imaging to follow yeast telomerase RNA dynamics and recruitment to telomeres in single cells. Tracking of single telomerase particles revealed a diffusive behavior and transient association with telomeres in G1 and G2 phases of the cell cycle.
View Article and Find Full Text PDFBackground: Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth.
View Article and Find Full Text PDFBackground: Through negative regulation of gene expression, microRNAs (miRNAs) can function in cancers as oncosuppressors, and they can show altered expression in various tumor types. Here we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many cell-fate-determining stages. MBs occur bimodally, with the peak incidence seen between 3-4 years and 8-9 years of age, although it can also occur in adults.
View Article and Find Full Text PDFThe DHH superfamily human protein h-prune, a binding partner of the metastasis suppressor nm23-H1, is frequently overexpressed in metastatic cancers. From an evolutionary perspective, h-prune is very close to eukaryotic exopolyphosphatases. Here, we show for the first time that h-prune efficiently hydrolyzes short-chain polyphosphates (k cat of 3-40 s (-1)), including inorganic tripoly- and tetrapolyphosphates and nucleoside 5'-tetraphosphates.
View Article and Find Full Text PDF