Publications by authors named "Emilio Bucio"

In this work, we present the modification of a medical-grade silicone catheter with the -vinylimidazole monomer using the grafting-from method at room temperature and induced by gamma rays. The catheters were modified by varying the monomer concentration (20-100 vol%) and the irradiation dose (20-100 kGy). Unlike the pristine material, the grafted poly(-vinylimidazole) chains provided the catheter with hydrophilicity and pH response.

View Article and Find Full Text PDF

Radiation chemistry presents a unique avenue for developing innovative polymeric materials with desirable properties, eliminating the need for chemical initiators, which can be potentially detrimental, especially in sensitive sectors like medicine. In this investigation, we employed a radiation-induced graft polymerization process with N-vinylcaprolactam (NVCL) to modify lignocellulosic membranes derived from , commonly known as maguey. The membranes underwent thorough characterization employing diverse techniques, including contact angle measurement, degree of swelling, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), nuclear magnetic resonance (CP-MAS C-NMR), X-ray photoelectron spectroscopy (XPS), and uniaxial tensile mechanical tests.

View Article and Find Full Text PDF

This work proposes the development of a polymer film made up of affordable components for its use as a healthcare material. Chitosan, itaconic acid, and fruit extract (Mexican variation) are the unique ingredients of this biomaterial prospect. Chitosan (from crustacean chitin) is crosslinked with itaconic acid, and in situ added fruit extract in a one-pot reaction carried out in water as the sole solvent.

View Article and Find Full Text PDF

Dual antimicrobial materials that have a combination of antimicrobial and antifouling properties were developed. They were developed through modification using gamma radiation of poly (vinyl chloride) (PVC) catheters with 4-vinyl pyridine (4VP) and subsequent functionalization with 1,3-propane sultone (PS). These materials were characterized by infrared spectroscopy, thermogravimetric analysis, swelling tests, and contact angle to determine their surface characteristics.

View Article and Find Full Text PDF

Polymers are versatile compounds which physical and chemical properties can be taken advantage of in wide applications. Particularly, in the biomedical field, polydimethylsiloxane (PDMS) is one of the most used for its high biocompatibility, easy manipulation, thermal, and chemical stability. Nonetheless, its hydrophobic nature makes it susceptible to bacterial pollution, which represents a disadvantage in this field.

View Article and Find Full Text PDF

Currently, polyethylene terephthalate (PET) is one of the most widely used polymeric materials in different sectors such as medicine, engineering, and food, among others, due to its benefits, including biocompatibility, mechanical resistance, and tolerance to chemicals and/or abrasion. However, despite all these excellent characteristics, it is not capable of preventing the proliferation of microorganisms on its surface. Therefore, providing this property to PET remains a difficult challenge.

View Article and Find Full Text PDF

Polymers have had an enormous impact on science and technology, and their interest relating to the development of new macromolecular materials has exponentially increased. Polymer nanocomposites, materials based on a polymeric matrix covalently coupled to reinforcement, display properties of both components. In the aerospace industry, polymer nanocomposites are attractive due to their promising characteristics, among which lightness, mechanical and thermal resistance, radiation and corrosion resistance, and conductive and magnetic properties stand out.

View Article and Find Full Text PDF

Nanocomposite materials have acquired great importance, as have similar composite materials on a macroscopic scale, because the reinforcement complements the defects in the properties of the matrix, thus obtaining materials with better mechanical, thermal, and electrical properties, among others. At the same time, the importance and research of polymeric nanocomposites reinforced with nanoparticles of various types have grown. Among those that have stood out the most in the electronics industry are polymeric matrices reinforced with nanoparticles that present dual behavior, that is, both magnetic and semiconductor.

View Article and Find Full Text PDF

In medical environments, polymeric surfaces tend to become contaminated, hindering the treatment and recovery from diseases. Biofouling-resistant materials, such as zwitterionic polymers, may mitigate this problem. In this work, the modification of PVC catheters with a binary graft of 4-vinylpyridine (4VP) and sulfobetaine methacrylate (SBMA) by the oxidative pre-irradiation method is proposed to develop pH-responsive catheters with an antifouling capacity.

View Article and Find Full Text PDF

A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds.

View Article and Find Full Text PDF

Surface modification of polypropylene (PP) films was achieved using gamma-irradiation-induced grafting to provide an adequate surface capable of carrying glycopeptide antibiotics. The copolymer was obtained following a versatile two-step route; pristine PP was exposed to gamma rays and grafted with methyl methacrylate (MMA), and afterward, the film was grafted with -vinylimidazole (NVI) by simultaneous irradiation. Characterization included Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and physicochemical analysis of swelling and contact angle.

View Article and Find Full Text PDF

Hydrogels are three-dimensional soft polymeric materials that can entrap huge amounts of water. They are widely attractive in the biomedicine area because of their outstanding applications such as biosensors, drug delivery vectors, or matrices for cell scaffolds. Generally, the low mechanical strength and fragile structure of the hydrogels limit their feasibility, but this is not the case.

View Article and Find Full Text PDF

Hydrogels are attractive biomaterials with favorable characteristics due to their water uptake capacity. However, hydrogel properties are determined by the cross-linking degree and nature, the tacticity, and the crystallinity of the polymer. These biomaterials can be sorted out according to the internal structure and by their response to external factors.

View Article and Find Full Text PDF

In recent years, polymer nanocomposites produced by combining nanofillers and a polymeric matrix are emerging as interesting materials. Polymeric composites have a wide range of applications due to the outstanding and enhanced properties that are obtained thanks to the introduction of nanoparticles. Therefore, understanding the filler-matrix relationship is an important factor in the continued growth of this scientific area and the development of new materials with desired properties and specific applications.

View Article and Find Full Text PDF

The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar.

View Article and Find Full Text PDF

The modification of medical devices is an area that has attracted a lot of attention in recent years; particularly, those developments which search to modify existing devices to render them antimicrobial. Most of these modifications involve at least two stages (modification of the base material with a polymer graft and immobilization of an antimicrobial agent) which are both time-consuming and complicate synthetic procedures; therefore, as an improvement, this project sought to produce antimicrobial silicone (PDMS) in a single step. Using gamma radiation as both an energy source for polymerization initiation and as a source of reducing agents in solution, PDMS was simultaneously grafted with acrylic acid and ethylene glycol dimethacrylate (AAc:EGDMA) while producing antimicrobial silver nanoparticles (AgNPs) onto the surface of the material.

View Article and Find Full Text PDF

New medical devices with anti-inflammatory properties are critical to prevent inflammatory processes and infections in medical/surgical procedures. In this work, we present a novel functionalization of silicone for medical use with a polymeric prodrug and a thermosensitive polymer, by graft polymerization (gamma rays), for the localized release of salicylic acid, an analgesic, and anti-inflammatory drug. Silicone rubber (SR) films were functionalized in two stages using graft polymerization from ionizing radiation (Co).

View Article and Find Full Text PDF

Hydrogels are materials with wide applications in several fields, including the biomedical and pharmaceutical industries. Their properties such as the capacity of absorbing great amounts of aqueous solutions without losing shape and mechanical properties, as well as loading drugs of different nature, including hydrophobic ones and biomolecules, give an idea of their versatility and promising demand. As they have been explored in a great number of studies for years, many routes of synthesis have been developed, especially for chemical/permanent hydrogels.

View Article and Find Full Text PDF

Silicone rubber (SR) is a material used for medical procedures, with a common example of its application being in implants for cosmetic or plastic surgeries. It is also an essential component for the development of medical devices. SR was functionalized with the polymeric prodrug of poly(2-methacryloyloxy-benzoic acid) (poly(2MBA)) to render the analgesic anti-inflammatory drug salicylic acid by hydrolysis.

View Article and Find Full Text PDF

We report on the synthesis of new manganese carbonyls-based materials prepared using gamma-rays radiation (at doses of 10 and 40 kGy) as energy source. Characterization was achieved using nuclear magnetic resonance, infrared spectroscopy, elemental analysis, single-crystal X-ray diffraction, differential scan calorimetry, thermogravimetric analysis, and mass spectrometry. The irradiated materials presented enhanced thermal stability along with formation of spherical shaped microparticles sized around 0.

View Article and Find Full Text PDF

A Gamma irradiation and photochemical crosslinking/grafting of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) methacrylate) (poly(HEMA-co-PEGMA)) hydrogels onto polyethyleneterephtalate fabric (PET) surfaces were evaluated, in order to obtain a hydrophilic homogeneous coating onto PET fabrics. The materials were characterized by FTIR-ATR, SEM, EDS, and thermal analysis. Furthermore, silver nanoparticles (AgNPs) were loaded by in situ reduction of AgNO, and its antibacterial activity against and was determined.

View Article and Find Full Text PDF

Catheter-associated infections still represent a challenging thread because of the likelihood of biofilm formation. The aim of this work was the surface modification of catheters to immobilize lysozyme and acylase under mild conditions while preserving antimicrobial and anti-quorum sensing performances. Glycidyl methacrylate (GMA) was grafted onto poly(vinyl chloride) (PVC) catheters by a pre-irradiation method.

View Article and Find Full Text PDF

Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physical-chemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards.

View Article and Find Full Text PDF

A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g.

View Article and Find Full Text PDF

Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone as a result of the high-energy radiation exposition over the polymeric material. Thus, a microenvironment suitable for the reaction among monomer and/or polymer and the active sites is formed and then leading to propagation to form side-chain grafts.

View Article and Find Full Text PDF