Publications by authors named "Emilie d'Aldebert"

Inflammatory Bowel Diseases (IBD) are chronic inflammatory disorders, where epithelial defects drive, at least in part, some of the pathology. We reconstituted human intestinal epithelial organ, by using three-dimension culture of human colon organoids. Our aim was to characterize morphological and functional phenotypes of control (non-IBD) organoids, compared to inflamed organoids from IBD patients.

View Article and Find Full Text PDF

Protease-activated receptors PAR1 and PAR2 play an important role in the control of epithelial cell proliferation and migration. However, the survival of normal and tumor intestinal stem/progenitor cells promoted by proinflammatory mediators may be critical in oncogenesis. The glycogen synthase kinase-3β (GSK3β) pathway is overactivated in colon cancer cells and promotes their survival and drug resistance.

View Article and Find Full Text PDF

Background & Aims: Ligand-gated calcium channels have been reported to be involved in the pathogenesis of inflammatory bowel disease. One family member, transient receptor potential vanilloid 4 (TRPV4), is activated by arachidonic acid derivatives that might be released on inflammation, yet its role in gastrointestinal inflammation has not been characterized. We investigated whether TRPV4 activation participates in intestinal inflammation and its expression and functions in the gastrointestinal tract.

View Article and Find Full Text PDF

Background: Although evidence points to a role for histamine and serotonin in visceral hypersensitivity, activation of calcium channels such as transient receptor potential vanilloid 4 (TRPV4) also causes visceral hypersensitivity. We hypothesised that TRPV4 is important for the generation of hypersensitivity, mediating histamine- and serotonin-induced visceral hypersensitivity.

Methods: In response to histamine, serotonin and/or TRPV4 agonist (4alphaPDD), calcium signals and TRPV4 localisation studies were performed on dorsal root ganglia (DRG) neurons projecting from the colon.

View Article and Find Full Text PDF

Backgrounds & Aims: Under normal conditions, the biliary tract is a microbial-free environment. The absence of microorganisms has been attributed to various defense mechanisms that include the physicochemical and signaling actions of bile salts. Here, we hypothesized that bile salts may stimulate the expression of a major antimicrobial peptide, cathelicidin, through nuclear receptors in the biliary epithelium.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlprsoqh0dmri0qvph500a8j35rpsig1r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once