Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2022
Cachexia is a devastating syndrome associated with the end-stage of several diseases, including cancer, and characterized by body weight loss and severe muscle and adipose tissue wasting. Although different cancer types are affected to diverse extents by cachexia, about 80% of all cancer patients experience this comorbidity, which highly reduces quality of life and response to therapy, and worsens prognosis, accounting for more than 25% of all cancer deaths. Cachexia represents an urgent medical need because, despite several molecular mechanisms have been identified, no effective therapy is currently available for this devastating syndrome.
View Article and Find Full Text PDFBackground: High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is passively released during cell death and secreted by activated cells of many lineages. HMGB1 contains three conserved redox-sensitive cysteine residues: cysteines in position 23 and 45 (C23 and C45) can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4.
View Article and Find Full Text PDFMuscular dystrophies (MDs) are a group of genetic diseases characterized by progressive muscle wasting associated to oxidative stress and persistent inflammation. It is essential to deepen our knowledge on the mechanism connecting these two processes because current treatments for MDs have limited efficacy and/or are associated with side effects. Here, we identified the alarmin high-mobility group box 1 (HMGB1) as a functional link between oxidative stress and inflammation in MDs.
View Article and Find Full Text PDFTrabectedin (ET743) and lurbinectedin (PM01183) limit the production of inflammatory cytokines that are elevated during cancer cachexia. Mice carrying C26 colon adenocarcinoma display cachexia (i.e.
View Article and Find Full Text PDFAcute inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens or cell damage, and is essential for immune defense and proper healing. However, unresolved inflammation can lead to chronic disorders, including cancer and fibrosis. The High Mobility Group Box 1 (HMGB1) protein is a Damage-Associated Molecular Pattern (DAMP) molecule that orchestrates key events in inflammation by switching among mutually exclusive redox states.
View Article and Find Full Text PDFNuclear positioning within cells is important for multiple cellular processes in development and regeneration. The most intriguing example of nuclear positioning occurs during skeletal muscle differentiation. Muscle fibers (myofibers) are multinucleated cells formed by the fusion of muscle precursor cells (myoblasts) derived from muscle stem cells (satellite cells) that undergo proliferation and differentiation.
View Article and Find Full Text PDFInflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. High Mobility Group Box 1 (HMGB1) is a nuclear protein that, when released on injury, triggers inflammation. We previously showed that HMGB1 with reduced cysteines is a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine.
View Article and Find Full Text PDFA single protein, HMGB1, directs the triggering of inflammation, innate and adaptive immune responses, and tissue healing after damage. HMGB1 is the best characterized damage-associated molecular pattern (DAMP), proteins that are normally inside the cell but are released after cell death, and allow the immune system to distinguish between antigens that are dangerous or not. Notably, cells undergoing severe stress actively secrete HMGB1 via a dedicated secretion pathway: HMGB1 is relocated from the nucleus to the cytoplasm and then to secretory lysosomes or directly to the extracellular space.
View Article and Find Full Text PDFHigh Mobility Group Box 1 protein was discovered as a nuclear protein, but it has a "second life" outside the cell where it acts as a damage-associated molecular pattern. HMGB1 is passively released or actively secreted in a number of diseases, including trauma, chronic inflammatory disorders, autoimmune diseases and cancer. Extracellular HMGB1 triggers and sustains the inflammatory response by inducing cytokine release and by recruiting leucocytes.
View Article and Find Full Text PDFOur body handles tissue damage by activating the immune system in response to intracellular molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns). DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are exposed to the extracellular environment: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress.
View Article and Find Full Text PDFSalicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA.
View Article and Find Full Text PDFHMGB1 is a nuclear protein that is released or secreted following trauma or severe cellular stress. Extracellular HMGB1 triggers inflammation and recruits leukocytes to the site of tissue damage. We review recent evidence that the ability of HMGB1 to recruit leukocytes may be entirely due to the formation of a heterocomplex with the homeostatic chemokine CXCL12.
View Article and Find Full Text PDFTissue damage causes inflammation, by recruiting leukocytes and activating them to release proinflammatory mediators. We show that high-mobility group box 1 protein (HMGB1) orchestrates both processes by switching among mutually exclusive redox states. Reduced cysteines make HMGB1 a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation to sulfonates by reactive oxygen species abrogates both activities.
View Article and Find Full Text PDFAfter tissue damage, inflammatory cells infiltrate the tissue and release proinflammatory cytokines. HMGB1 (high mobility group box 1), a nuclear protein released by necrotic and severely stressed cells, promotes cytokine release via its interaction with the TLR4 (Toll-like receptor 4) receptor and cell migration via an unknown mechanism. We show that HMGB1-induced recruitment of inflammatory cells depends on CXCL12.
View Article and Find Full Text PDFHigh mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is released passively during cell injury and necrosis, and secreted actively by immune cells. HMGB1 contains three conserved redox-sensitive cysteine residues: C23 and C45 can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4.
View Article and Find Full Text PDFSkin cancers are the most commonly diagnosed cancers. Understanding what are the factors contributing to skin tumour development can be instrumental to identify preventive therapies. The myeloid differentiation primary response gene (MyD)88, the downstream adaptor protein of most Toll-like receptors (TLR), has been shown to be involved in several mouse tumourigenesis models.
View Article and Find Full Text PDFInterleukin-31 (IL-31) is a recently described T cell-derived cytokine, mainly produced by T helper type 2 cells and related to the IL-6 cytokine family according to its structure and receptor. IL-31 is the ligand for a heterodimeric receptor composed of a gp130-like receptor (GPL) associated with the oncostatin M receptor (OSMR). A link between IL-31 and atopic dermatitis was shown by studying the phenotype of IL-31 transgenic mice and IL-31 gene haplotypes in patients suffering from dermatitis.
View Article and Find Full Text PDFChronic inflammatory diseases are characterized by local tissue injury caused by immunocompetent cells, in particular CD4(+) T lymphocytes, that are involved in the pathogenesis of these disorders via the production of distinctive sets of cytokines. Here, we have characterized single CD4(+) T cells that infiltrate inflamed tissue taken from patients with psoriasis, Crohn's disease, rheumatoid arthritis, or allergic asthma. Results from a cytokine production and gene profile analysis identified a population of in vivo differentiatedretinoid-related orphan receptor gamma-expressing T cells, producing high levels of IL-17, that can represent up to 30% of infiltrating T lymphocytes.
View Article and Find Full Text PDFCutaneous inflammatory diseases such as psoriasis vulgaris and atopic dermatitis are associated with altered keratinocyte function, as well as with a particular cytokine production profile of skin-infiltrating T lymphocytes. In this study we show that normal human epidermal keratinocytes express a functional type II oncostatin-M (OSM) receptor (OSMR) consisting of the gp130 and OSMRbeta components, but not the type I OSMR. The type II OSMR is expressed in skin lesions from both psoriatic patients and those with atopic dermatitis.
View Article and Find Full Text PDF