Publications by authors named "Emilie Seydoux"

Article Synopsis
  • - The lungs serve as a major interface for interactions with inhaled substances, and they are equipped with various immune cells (like epithelial cells, macrophages, and dendritic cells) to protect against these potential threats.
  • - The characteristics of these immune cell populations vary based on their location in the lungs, making them ideal candidates for targeted therapies that can influence immune responses when inhaled.
  • - Utilizing nanosized drug carriers for inhalation shows promise for enhancing or regulating immune responses, but careful study is needed to understand their effects and ensure safety for both prevention and treatment of lung-related issues.
View Article and Find Full Text PDF

Immunogenic agents known as adjuvants play a critical role in many vaccine formulations. Adjuvants often signal through Toll-like receptor (TLR) pathways, including formulations in licensed vaccines that target TLR4. While TLR4 is predominantly known for responding to lipopolysaccharide (LPS), a component of Gram-negative bacterial membranes, it has been shown to be a receptor for a number of molecular structures, including phospholipids.

View Article and Find Full Text PDF

Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against in a murine model when administered via different routes.

View Article and Find Full Text PDF

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies.

View Article and Find Full Text PDF

An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naive donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.

View Article and Find Full Text PDF

SARS-CoV-2 is a betacoronavirus virus responsible for the COVID-19 pandemic. Here, we determine the X-ray crystal structure of a potent neutralizing monoclonal antibody, CV30, isolated from a patient infected with SARS-CoV-2, in complex with the receptor binding domain. The structure reveals that CV30 binds to an epitope that overlaps with the human ACE2 receptor binding motif providing a structural basis for its neutralization.

View Article and Find Full Text PDF

Enterotoxigenic (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets.

View Article and Find Full Text PDF

Antibody responses develop following SARS-CoV-2 infection, but little is known about their epitope specificities, clonality, binding affinities, epitopes, and neutralizing activity. We isolated B cells specific for the SARS-CoV-2 envelope glycoprotein spike (S) from a COVID-19-infected subject 21 days after the onset of clinical disease. 45 S-specific monoclonal antibodies were generated.

View Article and Find Full Text PDF

B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages.

View Article and Find Full Text PDF

Anti-myelin-associated glycoprotein (MAG) neuropathy is a disabling autoimmune peripheral neuropathy that is caused by circulating monoclonal IgM autoantibodies directed against the human natural killer-1 (HNK-1) epitope. This carbohydrate epitope is highly expressed on adhesion molecules such as MAG, a glycoprotein present in myelinated nerves. We previously showed the therapeutic potential of the glycopolymer poly(phenyl disodium 3-O-sulfo-β-d-glucopyranuronate)-(1→3)-β-d-galactopyranoside (PPSGG) in selectively neutralizing anti-MAG IgM antibodies in an immunological mouse model and ex vivo with sera from anti-MAG neuropathy patients.

View Article and Find Full Text PDF

Many pathogens establish infection at mucosal surfaces such as the enteric pathogen (ETEC). Thus, there is a pressing need for effective vaccination strategies that promote protective immunity at mucosal surfaces. Toll-like receptor (TLR) ligands have been extensively developed as vaccine adjuvants to promote systemic immunity, whereas attenuated bacterial toxins including cholera toxin and heat-labile toxin (LT) have initially been developed to promote mucosal immunity.

View Article and Find Full Text PDF

Aluminum salts, developed almost a century ago, remain the most commonly used adjuvant for licensed human vaccines. Compared to more recently developed vaccine adjuvants, aluminum adjuvants such as Alhydrogel are heterogeneous in nature, consisting of 1-10 micrometer-sized aggregates of nanoparticle aluminum oxyhydroxide fibers. To determine whether the particle size and aggregated state of aluminum oxyhydroxide affects its adjuvant activity, we developed a scalable, top-down process to produce stable nanoparticles (nanoalum) from the clinical adjuvant Alhydrogel by including poly(acrylic acid) (PAA) polymer as a stabilizing agent.

View Article and Find Full Text PDF

The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring antigen-carriers for improving immune response but lack knowledge about their effects on immune cells.
  • The study focused on virosomes linked to ovalbumin (OVA) and their interaction with dendritic cells to assess how they influence T cell responses.
  • Results showed that virosomes were taken up faster by the cells and enhanced specific T cell activation, indicating their potential to improve adaptive immune responses.
View Article and Find Full Text PDF

Engineered nanoparticles (NPs) offer site-specific delivery, deposition and cellular uptake due to their unique physicochemical properties and were shown to modulate immune responses. The respiratory tract with its vast surface area is an attractive target organ for innovative immunomodulatory therapeutic applications by pulmonary administration of such NPs, enabling interactions with resident antigen-presenting cells (APCs), such as dendritic cells and macrophages. Depending on the respiratory tract compartment, e.

View Article and Find Full Text PDF

The respiratory tract is in constant contact with inhaled antigens from the external environment. In order to shape its line of defense, it is populated by various types of immune cells. Taking into account the scientific breakthroughs of nanomedicine and nanoparticle drug delivery, we can think of the respiratory tract as an ideal target organ to study and develop nanocarrier-based vaccines to treat respiratory tract disorders.

View Article and Find Full Text PDF

To address how surface charge affects the fate of potential nanocarriers in the lung, gold nanoparticles (AuNPs) coated with polyvinyl alcohol containing either positively (NH) or negatively (COOH) charged functional groups were intra-nasally instilled in mice, and their uptake by antigen presenting cell populations (APC) in broncho-alveolar lavage (BAL) fluid, trachea, and lung parenchyma, as well as trafficking to the lung draining lymph nodes (LDLNs) was assessed by flow cytometry. Furthermore, CD4 T cell proliferation in LDLNs was investigated following instillation. All APC subpopulations preferentially captured positively-charged AuNPs compared to their negatively-charged counterparts.

View Article and Find Full Text PDF

Introduction: Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood.

Methods: Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles.

View Article and Find Full Text PDF

The respiratory tract is an attractive target organ for novel diagnostic and therapeutic applications with nano-sized carriers, but their immune effects and interactions with key resident antigen-presenting cells (APCs) such as dendritic cells (DCs) and alveolar macrophages (AMs) in different anatomical compartments remain poorly understood. Polystyrene particles ranging from 20 nm to 1,000 nm were instilled intranasally in BALB/c mice, and their interactions with APC populations in airways, lung parenchyma, and lung-draining lymph nodes (LDLNs) were examined after 2 and 24 hours by flow cytometry and confocal microscopy. In the main conducting airways and lung parenchyma, DC subpopulations preferentially captured 20-nm particles, compared with 1,000-nm particles that were transported to the LDLNs by migratory CD11blow DCs and that were observed in close proximity to CD3⁺ T cells.

View Article and Find Full Text PDF