Publications by authors named "Emilie Narni-Mancinelli"

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells.

View Article and Find Full Text PDF

Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response.

View Article and Find Full Text PDF

There have been major advances in the immunotherapy of cancer in recent years, including the development of T cell engagers - antibodies engineered to redirect T cells to recognize and kill cancer cells - for the treatment of haematological malignancies. However, the field still faces several challenges to develop agents that are consistently effective in a majority of patients and cancer types, such as optimizing drug dose, overcoming treatment resistance and improving efficacy in solid tumours. A new generation of T cell-targeted molecules was developed to tackle these issues that are potentially more effective and safer.

View Article and Find Full Text PDF

Conventional natural killer (cNK) cells patrol the organism via circulation and invade tissues in response to infection or inflammation. In this issue of Immunity, Torcellan et al. report that circulating cNK cells are recruited into infected skin and differentiate into long-lived tissue-resident NK cells capable of mediating an accelerated response upon reinfection.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are a group of innate lymphocytes that do not express RAG-dependent rearranged antigen-specific cell surface receptors. ILCs are classified into five groups according to their developmental trajectory and cytokine production profile. They encompass NK cells, which are cytotoxic, helper-like ILCs 1-3, which functionally mirror CD4 T helper (Th) type 1, Th2 and Th17 cells respectively, and lymphoid tissue inducer (LTi) cells.

View Article and Find Full Text PDF

MICA and MICB are tightly regulated stress-induced proteins that trigger the immune system by binding to the activating receptor NKG2D on cytotoxic lymphocytes. MICA and MICB are highly polymorphic molecules with prevalent expression on several types of solid tumors and limited expression in normal/healthy tissues, making them attractive targets for therapeutic intervention. We have generated a series of anti-MICA and MICB cross-reactive antibodies with the unique feature of binding to the most prevalent isoforms of both these molecules.

View Article and Find Full Text PDF

Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly killing tumor cells. They also secrete cytokines and chemokines, which participate in the shaping of the adaptive response. NK cells identify tumor cells and are activated through a net positive signal from inhibitory and activating receptors.

View Article and Find Full Text PDF

Natural killer (NK)-based therapies against cancer are emerging, but the understanding of NK cell functions needs to be completed to optimize these treatments. In this issue, Pan et al. (2022) show that pro-apoptotic molecules, such as BH3-mimetics, synergize with NK cells to induce mitochondria-driven apoptosis in tumor cells, thereby enhancing the efficacy of NK cell therapies.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, helper-like ILC1s, ILC2s, and ILC3s, and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain largely unclear.

View Article and Find Full Text PDF

Because of their potent antitumor activity and their proinflammatory role, natural killer (NK) cells are at the forefront of efforts to develop immuno-oncologic treatments. NK cells participate in immune responses to tumors by killing target cells and producing cytokines. However, in the immunosuppressive tumor microenvironment, NK cells become dysfunctional through exposure to inhibitory molecules produced by cancer cells, leading to tumor escape.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow.

View Article and Find Full Text PDF

The innate lymphoid cell (ILC) family consists of natural killer (NK) cells, helper-like lymphoid cells (ILC1s, ILC2s, and ILC3s), and lymphoid tissue inducer (LTi) cells. Helper-like ILCs are considered the innate counterpart of T-helper cells because of similarities in their cytokine output and expression of key transcription factors. ILCs provide and regulate innate immune functions before the development of adaptive immunity.

View Article and Find Full Text PDF

NK cells are broadly distributed innate lymphoid cells (ILCs) encompassing distinct populations based on CD11b and CD27 expression in mice or CD56 intensity in humans. Involved in anti-viral and anti-tumor immunity thanks to their cytokines and chemokines secretion as well as their cytotoxic capabilities, NK cells have emerged as a promising therapeutic target in several solid tumors and hematological malignancies. To view this Snapshot, open or download the PDF.

View Article and Find Full Text PDF

The implementation of immune checkpoint inhibitors to the oncology clinic signified a new era in cancer treatment. After the first indication of melanoma, an increasing list of additional cancer types are now treated with immune system targeting antibodies to PD-1, PD-L1 and CTLA-4, alleviating inhibition signals on T cells. Recently, we published proof-of-concept results on a novel checkpoint inhibitor, NKG2A.

View Article and Find Full Text PDF

Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have revolutionized cancer treatment. However, many cancers are resistant to ICIs, and the targeting of additional inhibitory signals is crucial for limiting tumor evasion. The production of adenosine via the sequential activity of CD39 and CD73 ectoenzymes participates to the generation of an immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphoid cells endowed with cytolytic activity and a capacity to secrete cytokines and chemokines. Several lines of evidence suggest that NK cells play an important role in anti-tumor immunity. Some therapies against hematological malignacies make use of the immune properties of NK cells, such as their ability to kill residual leukemic blasts efficiently after conditioning during haploidentical hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8 T cell effector functions in mice and humans.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphoid cells (ILCs) involved in antimicrobial and antitumoral responses. Several NK cell subsets have been reported in humans and mice, but their heterogeneity across organs and species remains poorly characterized. We assessed the diversity of human and mouse NK cells by single-cell RNA sequencing on thousands of individual cells isolated from spleen and blood.

View Article and Find Full Text PDF

NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCR strain.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are innate immune cells located in lymphoid and non-lymphoid tissues. They are particularly abundant at mucosal and barrier surfaces. Three major ILC subsets are present in humans and mice: group 1 ILCs (comprising natural killer (NK) cells and ILC1s), ILC2s, and ILC3s.

View Article and Find Full Text PDF