Unlabelled: Microplastic is now ubiquitous in freshwater, sediment and biota, globally. This is as a consequence of inputs from, for example, waste mismanagement, effluents from wastewater treatment plants and surface runoff from agricultural areas. In this study, we investigated point source pollution of plastic to an upland stream, originating from a recycling plant that recycles polyethylene film in a remote area of Norway.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2022
Microplastics have been detected in lake environments globally, including in remote regions. Agricultural and populated areas are known to congregate several inputs and release pathways for microplastic. This study investigated microplastic (50-5000 µm) contamination in five Danish freshwater lakes with catchments dominated by arable land use.
View Article and Find Full Text PDFChitinaceous organisms have been found to ingest microplastic; however, a standardised, validated, and time- and cost-efficient method for dissolving these organisms without affecting microplastic particles is still required. This study tested four protocols for dissolving organisms with a chitin exoskeleton: 1) potassium hydroxide (KOH) + chitinase, 2) Creon® + chitinase, 3) hydrogen peroxide (HO) + chitinase, and, 4) Nitric Acid (HNO) + hydrogen peroxide (HO). The effects on microplastics composed of eight different polymers were also tested.
View Article and Find Full Text PDFWe report the development and application of a prototype tool for integrated assessment of chemical status in aquatic environments based on substance- and matrix-specific environmental assessment criteria (thresholds). The Chemical Status Assessment Tool (CHASE) integrates data on hazardous substances in water, sediments and biota as well as bio-effect indicators and is based on a substance- or bio-effect-specific calculation of a 'contamination ratio' being the ratio between an observed concentration and a threshold value. Values <1.
View Article and Find Full Text PDF