Publications by authors named "Emilie Heuland"

Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key kinase that transduces Ca²⁺ signals into downstream effects acting on a range of cellular processes in nervous system and muscular tissues. In insects, different CaMKII isoforms have been reported in Drosophila melanogaster, Apis florae, Bombus terrestris, and Bombus impatiens but little is known on the organization and tissue-specific expression of these isoforms with the exception of Drosophila. The present study reports the cloning of five CaMKII splice variants issued from a single gene and their tissue-specific expression in the cockroach Periplaneta americana.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine or MDMA (ecstasy) is a synthetic illicit drug which is widely consumed throughout the world. Drug abuse during pregnancy may have an impairing effect on the progeny of drug-abusing mothers. The purpose of the present study was to assess the effect of prenatal MDMA exposure on the progeny development, using a rat model.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

Among transgenic mouse models of Alzheimer's disease, APP-SWE mice have been shown to develop beta-amyloid plaques and to exhibit progressive impairment of cognitive function. Human Alzheimer's disease, however, also includes secondary clinical manifestations, spanning from hyperactivity to agitation. The aim of this study was a better characterization of motor impulsivity in APP-SWE mice, observed at 12 months of age, when levels of soluble beta-amyloid are elevated and beta-amyloid neuritic plaques start to appear.

View Article and Find Full Text PDF