Huntington's Disease (HD) is a dominantly inherited neurodegenerative disease for which the major causes of mortality are neurodegeneration-associated aspiration pneumonia followed by cardiac failure. mTORC1 pathway perturbations are present in HD models and human tissues. Amelioration of mTORC1 deficits by genetic modulation improves disease phenotypes in HD models, is not a viable therapeutic strategy.
View Article and Find Full Text PDFThe mechanistic target of rapamycin complex 1 (mTORC1) has been linked to several important chronic medical conditions many of which are associated with advancing age. A variety of inputs including the amino acid leucine are required for full mTORC1 activation. The cytoplasmic proteins Sestrin1 and Sestrin2 specifically bind to the multiprotein complex GATOR2 and communicate leucine sufficiency to the mTORC1 pathway activation complex.
View Article and Find Full Text PDFLRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected.
View Article and Find Full Text PDFMutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C.
View Article and Find Full Text PDFBackground: The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.
View Article and Find Full Text PDFParkin and DJ-1 are two multi-functional proteins linked to autosomal recessive early-onset Parkinson's disease (PD) that have been shown to functionally interact by as-yet-unknown mechanisms. We have delineated the mechanisms by which parkin controls DJ-1. Parkin modulates DJ-1 transcription and protein levels via a signaling cascade involving p53 and the endoplasmic reticulum (ER)-stress-induced active X-box-binding protein-1S (XBP-1S).
View Article and Find Full Text PDFBackground: Loss of function mutations in the DJ-1 gene have been linked to recessively inherited forms of Parkinsonism. Mitochondrial dysfunction and increased oxidative stress are thought to be key events in the pathogenesis of Parkinson's disease. Although it has been reported that DJ-1 serves as scavenger for reactive oxidative species (ROS) by oxidation on its cysteine residues, how loss of DJ-1 affects mitochondrial function is less clear.
View Article and Find Full Text PDFBackground: Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson's disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.
Results: In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons.
Background: Dominantly inherited missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease, but its normal physiological function remains unclear. We previously reported that loss of LRRK2 causes impairment of protein degradation pathways as well as increases of apoptotic cell death and inflammatory responses in the kidney of aged mice.
Results: Our analysis of LRRK2-/- kidneys at multiple ages, such as 1, 4, 7, and 20 months, revealed unique age-dependent development of a variety of molecular, cellular, and ultrastructural changes.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease. LRRK2 is a large protein containing a small GTPase domain and a kinase domain, but its physiological role is unknown. To identify the normal function of LRRK2 in vivo, we generated two independent lines of germ-line deletion mice.
View Article and Find Full Text PDFThe senile plaques found in the brains of patients with Alzheimer's disease are mainly due to the accumulation of amyloid beta-peptides (A beta) that are liberated by gamma-secretase, a high molecular weight complex including presenilins, PEN-2, APH-1 and nicastrin. The depletion of each of these proteins disrupts the complex assembly into a functional protease. Here, we describe another level of regulation of this multimeric protease.
View Article and Find Full Text PDFMutations of the ubiquitin ligase parkin account for most autosomal recessive forms of juvenile Parkinson's disease (AR-JP). Several studies have suggested that parkin possesses DNA-binding and transcriptional activity. We report here that parkin is a p53 transcriptional repressor.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies. Alpha-synuclein and its interactor synphilin-1 are major components of these inclusions. Rare mutations in the alpha-synuclein and synphilin-1 genes have been implicated in the pathogenesis of PD; however, the normal function of these proteins is far from being completely elucidated.
View Article and Find Full Text PDFNicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway.
View Article and Find Full Text PDFThe presenilin-dependent gamma-secretase complex is mainly composed of four distinct proteins, namely presenilin 1 or presenilin 2, nicastrin, anterior pharynx defective-1 (Aph-1) and presenilin enhancer (Pen-2). The mechanisms by which the complex is assembled, how its stoichiometry is controlled and how its catalytic activity is regulated are poorly understood. Recent studies indicated that Aph-1 and Pen-2 undergo proteolysis by the proteasome.
View Article and Find Full Text PDFParkinson disease is the second most frequent neurodegenerative disorder after Alzheimer disease. A subset of genetic forms of Parkinson disease has been attributed to alpha-synuclein, a synaptic protein with remarkable chaperone properties. Synphilin-1 is a cytoplasmic protein that has been identified as a partner of alpha-synuclein (Engelender, S.
View Article and Find Full Text PDF