The LabPET II is a new positron emission tomography technology platform designed to achieve submillimetric spatial resolution imaging using fully pixelated avalanche photodiodes-based detectors and highly integrated parallel front-end processing electronics. The detector was designed as a generic building block to develop devices for preclinical imaging of small to mid-sized animals and for clinical imaging of the human brain. The aim of this work is to assess the physical characteristics and imaging performance of the mouse version of LabPET II scanner following the NEMA NU4-2008 standard and using high resolution phantoms and in vivo imaging applications.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
August 2020
The Time-over-Threshold (ToT) analog-to-digital signal processing approach provides a power-efficient and cost-effective technique to extract all relevant information from detectors in high-energy physics and Positron Emission Tomography (PET) imaging. In this work, three calibration methods were investigated to correct the inherent nonlinear response of the ToT data using 1) -ray sources of various energies, 2) internal electronic gain variation in the LabPET II ASIC in combination with a single energy -ray source, and 3) internal gain variation along with an embedded pulse charge generator in replacement of a -ray source. The electronic gain calibration technique was shown to achieve equivalent correction accuracy as the -ray sources calibration.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
May 2019
The concept of a new ultra-high resolution positron emission tomography (PET) brain scanner featuring truly pixelated detectors based on the LabPET II technology is presented. The aim of this study is to predict the performance of the scanner using GATE simulations. The NEMA procedures for human and small animal PET scanners were used, whenever appropriate, to simulate spatial resolution, scatter fraction, count rate performance and the sensitivity of the proposed system compared to state-of-the-art PET scanners that would currently be the preferred choices for brain imaging, namely the HRRT dedicated brain PET scanner and the Biograph Vision wholebody clinical PET scanner.
View Article and Find Full Text PDFBackground: The aim of the study is to assess accuracy of activity quantification of Lu studies performed according to recommendations provided by the committee on Medical Internal Radiation Dose (MIRD) pamphlets 23 and 26. The performances of two scatter correction and three segmentation methods were compared. Additionally, the accuracy of tomographic and planar methods for determination of the camera normalization factor (CNF) was evaluated.
View Article and Find Full Text PDF