The underlying causes of diabetic kidney disease are still largely unknown. New insights into the contributing causes of diabetic nephropathy are important to prevent this complication. Hyperglycemia and hypertension are some of the risk factors for diabetic nephropathy.
View Article and Find Full Text PDFAdverse outcome pathways (AOPs) can aid with chemical risk assessment by providing plausible links between chemical activity at the molecular level and effect outcomes in intact organisms. Because AOPs can be used to infer causality between upstream and downstream events in toxicological pathways, the AOP framework can also facilitate increased uptake of alternative methods and new approach methodologies to help inform hazard identification. However, a prevailing challenge is the limited number of fully developed and endorsed AOPs, primarily due to the substantial amount of work required by AOP developers and reviewers.
View Article and Find Full Text PDFObjective: Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice.
Methods: Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks.
The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss.
View Article and Find Full Text PDFAmino acids stimulate the secretion of glucagon, and glucagon receptor signaling regulates amino acid catabolism via ureagenesis, together constituting the liver-α cell axis. Impairment of the liver-α cell axis is observed in metabolic diseases such as diabetes. It is, however, unknown whether glucose affects the liver-α cell axis.
View Article and Find Full Text PDFGlucagon and insulin are the main regulators of blood glucose. While the actions of insulin are extensively mapped, less is known about glucagon. Besides glucagon's role in glucose homeostasis, there are additional links between the pancreatic α-cells and the hepatocytes, often collectively referred to as the liver-α-cell axis, that may be of importance for health and disease.
View Article and Find Full Text PDF