Publications by authors named "Emilie Avazeri"

Experimental autoimmune encephalitis (EAE) is a well-recognized model for the study of human acquired demyelinating diseases (ADD), a group of inflammatory disorders of the central nervous system (CNS) characterized by inflammation, myelin loss, and neurological impairment of variable severity. In rodents, EAE is typically induced by active immunization with a combination of myelin-derived antigen and a strong adjuvant as complete Freund's adjuvant (CFA), containing components of the mycobacterial wall, while myelin antigen alone or associated with other bacterial components, as lipopolysaccharides (LPS), often fails to induce EAE. In contrast to this, EAE can be efficiently induced in non-human primates by immunization with the recombinant human myelin oligodendrocyte glycoprotein (rhMOG), produced in Escherichia coli (E.

View Article and Find Full Text PDF

When facing microbes, animals engage in behaviors that lower the impact of the infection. We previously demonstrated that internal sensing of bacterial peptidoglycan reduces female oviposition via NF-κB pathway activation in some neurons (Kurz et al., 2017).

View Article and Find Full Text PDF

The study of isotopic variations of endogenous and toxic metals in fluids and tissues is a recent research topic with an outstanding potential in biomedical and toxicological investigations. Most of the analyses have been performed so far in bulk samples, which can make the interpretation of results entangled, since different sources of stress or the alteration of different metabolic processes can lead to similar variations in the isotopic compositions of the elements in bulk samples. The downscaling of the isotopic analysis of elements at the sub-cellular level, is considered as a more promising alternative.

View Article and Find Full Text PDF

Uranium (U) is the heaviest naturally occurring element ubiquitously present in the Earth's crust. Human exposure to low levels of U is, therefore, unavoidable. Recently, several studies have clearly pointed out that the brain is a sensitive target for U, but the mechanisms leading to the observed neurological alterations are not fully known.

View Article and Find Full Text PDF

The impact of natural uranium (U) on differentiated human neuron-like cells exposed to 1, 10, 125, and 250 µM of U for seven days was assessed. In particular, the effect of the U uptake on the homeostatic modulation of several endogenous elements (Mg, P, Mn, Fe, Zn, and Cu), the U isotopic fractionation upon its incorporation by the cells and the evolution of the intracellular Cu and Zn isotopic signatures were studied. The intracellular accumulation of U was accompanied by a preferential uptake of U for cells exposed to 1 and 10 µM of U, whereas no significant isotopic fractionation was observed between the extra- and the intracellular media for higher exposure U concentrations.

View Article and Find Full Text PDF

Natural uranium is an ubiquitous element present in the environment and human exposure to low levels of uranium is unavoidable. Although the main target of acute uranium toxicity is the kidney, some concerns have been recently raised about neurological effects of chronic exposure to low levels of uranium. Only very few studies have addressed the molecular mechanisms of uranium neurotoxicity, indicating that the cholinergic and dopaminergic systems could be altered.

View Article and Find Full Text PDF

The monitoring of isotopic fractionations in in vitro cultured human cell samples is a very promising and under-exploited tool to help identify the metabolic processes leading to disease-induced isotopic fractionations or decipher metabolic pathways of toxic metals in these samples. One of the limitations is that the analytes are often present at small amounts, ranging from tens to hundreds of ng, thus making challenging low-uncertainty isotope ratio determinations. Here we present a new procedure for U, Cu and Zn purification and isotope ratio determinations in cultured human neuron-like cells exposed to natural U.

View Article and Find Full Text PDF

The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the U isotope with regard to U. Efforts were made to develop and then validate a procedure for highly accurate n(U)/n(U) determinations in microsamples of cells.

View Article and Find Full Text PDF

The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontqch7dbok3pl4f3g9frnqd84rnfk14hg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once