Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD(-); n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD(+); n = 21).
View Article and Find Full Text PDFA preliminary understanding into the phenotypic effect of DNA segment copy number variation (CNV) is emerging. These rearrangements were demonstrated to influence, in a somewhat dose-dependent manner, the expression of genes that map within them. They were also shown to modify the expression of genes located on their flanks and sometimes those at a great distance from their boundary.
View Article and Find Full Text PDFDown syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype-phenotype correlations.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2006
Patients with Down syndrome appear to be protected from the development of atherosclerosis. On the contrary, hyperhomocysteinemia is associated with an increased risk for atherosclerosis. As hyperhomocysteinemia due to cystathionine beta synthase deficiency is associated with a decreased expression of paraoxonase-1, a major anti-atherosclerotic component secreted by the liver, we aimed to analyze the expression of paraoxonase-1 and cystathionine beta synthase in Down syndrome fetal liver by quantitative real-time reverse transcriptase-polymerase chain reaction.
View Article and Find Full Text PDF