Publications by authors named "Emiliano Cocco"

Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol.

View Article and Find Full Text PDF

Background: While NTRK fusion-positive cancers can be exquisitely sensitive to first-generation TRK inhibitors, resistance inevitably occurs, mediated in many cases by acquired NTRK mutations. Next-generation inhibitors (e.g.

View Article and Find Full Text PDF

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2.

View Article and Find Full Text PDF

Since their discovery in 2002, mutations have been identified as clear drivers of oncogenesis in several cancer types. Currently, their incidence rate is nearly 7% of all solid tumors with BRAF V600E constituting approximately 90% of these diagnoses. In melanoma, thyroid cancer, and histiocytic neoplasms, BRAF hotspot mutations are found at a rate of about 50%, while in lung and colorectal cancers they range from 3% to 10% of reported cases.

View Article and Find Full Text PDF

The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations.

View Article and Find Full Text PDF

Oncogenes that occur in ≤5% of non-small-cell lung cancers have been defined as 'rare'; nonetheless, this frequency can correspond to a substantial number of patients diagnosed annually. Within rare oncogenes, less commonly identified alterations (such as HRAS, NRAS, RIT1, ARAF, RAF1 and MAP2K1 mutations, or ERBB family, LTK and RASGRF1 fusions) can share certain structural or oncogenic features with more commonly recognized alterations (such as KRAS, BRAF, MET and ERBB family mutations, or ALK, RET and ROS1 fusions). Over the past 5 years, a surge in the identification of rare-oncogene-driven lung cancers has challenged the boundaries of traditional clinical grade diagnostic assays and profiling algorithms.

View Article and Find Full Text PDF

The use of anticancer drugs targeting specific molecular tumor characteristics is rapidly increasing in clinical practice, but selecting patients to benefit from these remains a challenge. It has been suggested that organoid cultures would be ideally suited to test drug responses in vitro. Here we describe and characterize in depth a case of ETV6-NTRK3 gene fusion-positive secretory carcinoma of the salivary glands and corresponding organoid cultures that responded and subsequently acquired resistance to TRK targeting therapy with larotrectinib.

View Article and Find Full Text PDF

Cancer is a complex disease arising from a homeostatic imbalance of cell-intrinsic and microenvironment-related mechanisms. A multimodal approach to treat cancer that includes surgery, chemotherapy, and radiation therapy often fails in achieving tumor remission and produces unbearable side effects including secondary malignancies. Novel strategies have been implemented in the past decades in order to replace conventional chemotherapeutics with targeted, less toxic drugs.

View Article and Find Full Text PDF

First-line treatments for mild to moderate psoriasis are typically topical formulations containing corticosteroids, however, the therapeutic efficacy of these formulations is compromised by limited penetration and skin retention. Even more challenging, off-target corticosteroids are known to adversely affect healthy skin, including induction of epidermal and dermal atrophy. Here, we report a nanoparticle-based topical formulation that cures psoriasis in a single dose, but leaves healthy skin intact.

View Article and Find Full Text PDF

Unlabelled: The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K.

View Article and Find Full Text PDF
Article Synopsis
  • The study confirms that the RET inhibitor selpercatinib is effective in treating RET-driven cancers but explores why some patients respond poorly or develop resistance.
  • Pre-treatment genetic factors generally do not influence how patients respond to selpercatinib, except for rare cases linked to RAS mutations.
  • Resistance to selpercatinib typically arises through MAPK pathway reactivation, involving either mutations related to RET or the selection of RET-wildtype tumor cells, suggesting that combination therapies may be necessary for ongoing treatment.
View Article and Find Full Text PDF

To find metastatic recurrence biomarkers of triple-negative breast cancer (TNBC) treated by neoadjuvant chemotherapy and anti-EGFR antibodies (NAT), we evaluated tumor genomic, transcriptomic, and immune features, using MSK-IMPACT assay, gene arrays, Nanostring technology, and TIL assessment on H&E. Six patients experienced a rapid fatal recurrence (RR) and other 6 had later non-fatal recurrences (LR). Before NAT, RR had low expression of 6 MHC class I and 13 MHC class II genes but were enriched in upregulated genes involved in the cell cycle-related pathways.

View Article and Find Full Text PDF

On-target resistance to next-generation TRK inhibitors in TRK fusion-positive cancers is largely uncharacterized. In patients with these tumors, we found that TRK xDFG mutations confer resistance to type I next-generation TRK inhibitors designed to maintain potency against several kinase domain mutations. Computational modeling and biochemical assays showed that TRKA and TRKC xDFG substitutions reduce drug binding by generating steric hindrance.

View Article and Find Full Text PDF

Mutations in the pioneer transcription factor FOXA1 are a hallmark of estrogen receptor-positive (ER) breast cancers. Examining FOXA1 in ∼5,000 breast cancer patients identifies several hotspot mutations in the Wing2 region and a breast cancer-specific mutation SY242CS, located in the third β strand. Using a clinico-genomically curated cohort, together with breast cancer models, we find that FOXA1 mutations associate with a lower response to aromatase inhibitors.

View Article and Find Full Text PDF

Treatment paradigms for patients with upper tract urothelial carcinoma (UTUC) are typically extrapolated from studies of bladder cancer despite their distinct clinical and molecular characteristics. The advancement of UTUC research is hampered by the lack of disease-specific models. Here, we report the establishment of patient derived xenograft (PDX) and cell line models that reflect the genomic and biological heterogeneity of the human disease.

View Article and Find Full Text PDF
Article Synopsis
  • The HER2 gene mutations and amplifications lead to increased tumor growth by hyperactivating the HER2 receptor tyrosine kinase, but its internalization and ubiquitination are crucial for the effectiveness of certain anti-HER2 therapies, particularly in lung cancer.
  • A clinical trial showed a 51% response rate for the drug ado-trastuzumab emtansine (T-DM1) in non-small cell lung cancer patients with HER2 alterations, and using irreversible pan-HER inhibitors can further improve treatment outcomes.
  • Switching from T-DM1 to trastuzumab deruxtecan (T-DXd) offers durable responses in cases where resistance develops, indicating potential advancements in the
View Article and Find Full Text PDF

Mutations in ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, are the most common alterations of the SWI/SNF complex in estrogen-receptor-positive (ER) breast cancer. We identify that ARID1A inactivating mutations are present at a high frequency in advanced endocrine-resistant ER breast cancer. An epigenome CRISPR-CAS9 knockout (KO) screen identifies ARID1A as the top candidate whose loss determines resistance to the ER degrader fulvestrant.

View Article and Find Full Text PDF

Purpose: TRK inhibitors achieve marked tumor-agnostic efficacy in TRK fusion-positive cancers and consequently are now an established standard of care. Little is known, however, about the demographics, outcomes, response to alternative standard therapies, or genomic characteristics of TRK fusion-positive cancers.

Experimental Design: Utilizing a center-wide screening program involving more than 26,000 prospectively sequenced patients, genomic and clinical data from all cases with TRK fusions were extracted.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced cervical cancer has a poor prognosis, but a study of cervical cancer cell lines identified key mutations and genetic patterns that could inform treatment.
  • Researchers found somatic mutations in 22 genes and widespread mutations linked to the APOBEC enzyme, focusing on pathways like ERBB2 and PI3K.
  • Drug testing revealed that combining PIK3CA and pan-HER inhibitors showed promising results in shrinking tumors with specific genetic alterations, indicating potential new treatment strategies for patients.
View Article and Find Full Text PDF

TRK fusions are found in a variety of cancer types, lead to oncogenic addiction, and strongly predict tumor-agnostic efficacy of TRK inhibition. With the recent approval of the first selective TRK inhibitor, larotrectinib, for patients with any TRK-fusion-positive adult or pediatric solid tumor, to identify mechanisms of treatment failure after initial response has become of immediate therapeutic relevance. So far, the only known resistance mechanism is the acquisition of on-target TRK kinase domain mutations, which interfere with drug binding and can potentially be addressable through second-generation TRK inhibitors.

View Article and Find Full Text PDF

HER2 activating mutations act as oncogenic drivers in various cancer types. In the clinic, they can be identified by next generation sequencing (NGS) in either tumor biopsies or circulating cell-free DNA (cfDNA). Preclinical data indicate that HER2 "hot spot" mutations are constitutively active, have transforming capacity in vitro and in vivo and show variable sensitivity to anti-HER2 based therapies.

View Article and Find Full Text PDF

The PI3K pathway integrates extracellular stimuli to phosphorylate effectors such as AKT and serum-and-glucocorticoid-regulated kinase (SGK1). We have previously reported that the PI3K pathway regulates estrogen receptor (ER)-dependent transcription in breast cancer through the phosphorylation of the lysine methyltransferase KMT2D by AKT. Here, we show that PI3Kα inhibition, via a negative-feedback loop, activates SGK1 to promote chromatin-based regulation of ER-dependent transcription.

View Article and Find Full Text PDF