Publications by authors named "Emiliano Bilotti"

Starch-derived films exhibit significant potential for packaging applications owing to their low cost, biodegradable characteristics, and natural abundance. Nonetheless, there is a demand to enhance their mechanical properties and moisture resistance to broaden their use. In this study, high performing sorbitol-plasticized starch/TiCT MXene nanocomposites, reinforced with ultra-low filler contents, were fabricated for the first time in literature.

View Article and Find Full Text PDF

Flexible strain sensors have been subject to intense research efforts in recent years, in an attempt to overcome the limitations of their rigid counterparts and find use in demanding applications. In this work, the effective calibration of resistive-type, stretchable strain sensors is discussed. A new model for the piezoresistive response of stretchable polymer nanocomposite strain sensors is presented which facilitates calibration over the full conducting strain range of the material.

View Article and Find Full Text PDF

The needs for sustainable development and energy efficient manufacturing are crucial in the development of future composite materials. Out-of-oven (OoO) curing of fiber-reinforced composites based on smart conductive polymers reduces energy consumption and self-regulates the heating temperature with enhanced safety in manufacturing, presenting an excellent example of such energy efficient approaches. However, achieving the desired curing processes, especially for high-performance systems where two-stage curing is often required, remains a great challenge.

View Article and Find Full Text PDF

The development of high-performance self-powered sensors in advanced composites addresses the increasing demands of various fields such as aerospace, wearable electronics, healthcare devices, and the Internet-of-Things. Among different energy sources, the thermoelectric (TE) effect which converts ambient temperature gradients to electric energy is of particular interest. However, challenges remain on how to increase the power output as well as how to harvest thermal energy at the out-of-plane direction in high-performance fiber-reinforced composite laminates, greatly limiting the pace of advance in this evolving field.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs), with their combination of excellent electrical conductivity, Seebeck coefficient, mechanical robustness and environmental stability are highly desired as thermoelectric (TE) materials for a wide range of fields including Internet of Things, health monitoring and environmental remediation solutions. However, their high thermal conductivity () is an obstacle to practical TE applications. Herein, we present a novel method to reduce the of CNT veils, by introducing defects, while preserving their Seebeck coefficient and electrical conductivity.

View Article and Find Full Text PDF

Organic thermoelectric (TE) composites and flexible devices have gained a rapid development in recent decade. Herein, a flexible and foldable film of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/single-walled carbon nanotube (PEDOT:PSS/SWCNT) composite is fabricated by post-treatment with an ionic liquid (IL), and an S-shape TE generator (TEG) is designed to harvest heat from human body via a vertical temperature gradient. After being post-treated with IL of bis(trifluoromethane)sulfonimide lithium salt (LiTFSI), the PEDOT:PSS/SWNCT composite displays an improved electrical conductivity from 1063 ± 80 to 1562 ± 170 S cm, with an almost constant Seebeck coefficient of ∼21.

View Article and Find Full Text PDF

With the emergence of stretchable/wearable devices, functions, such as sensing, energy storage/harvesting, and electrical conduction, should ideally be carried out by a single material, while retaining its ability to withstand large elastic deformations, to create compact, functionally-integrated and autonomous systems. A new class of trimodal, stretchable yarn-based transducer formed by coating commercially available Lycra® yarns with PEDOT:PSS is presented. The material developed can sense strain (first mode), and temperature (second mode) and can power itself thermoelectrically (third mode), eliminating the need for an external power-supply.

View Article and Find Full Text PDF

High-throughput roll-to-roll processes are desirable to scale up the manufacture of flexible thermoelectric generators. While vacuum deposition onto a heated dynamic substrate presents a considerable engineering challenge, viable postdeposition in-line annealing processes are considered as an alternative to improve the functional performance of as-deposited films. The effect of infrared and electron-beam irradiations of 1 μm thick bismuth telluride thin films, produced by a vacuum roll-to-roll process for use as thermoelectric materials, was examined.

View Article and Find Full Text PDF

Atopic dermatitis (eczema) is a widespread disorder, with researchers constantly looking for more efficacious treatments. Natural oils are reported to be an effective therapy for dry skin, and medical textiles can be used as an alternative or supporting therapy. In this study, fibrous membranes from poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) with low and high molecular weights were manufactured to obtain nano- and micrometer fibers electrospinning for the designed patches used as oil carriers for atopic skin treatment.

View Article and Find Full Text PDF

Remotely addressable actuators are of great interest in fields like microrobotics and smart textiles because of their simplicity, integrity, flexibility, and lightweight. However, most of the existing actuator systems are composed of complex assemblies and/or offer a low response rate. Here, the actuation performance of a light-driven, highly oriented film based on ultra-high molecular weight polyethylene (UHMW-PE), containing a photo-responsive additive, 2-(2-benzotriazol-2-yl)-4,6-ditertpentylphenol (BZT), is reported.

View Article and Find Full Text PDF

Poly(vinylidene fluoride)-based dielectric materials are prospective candidates for high power density electric storage applications because of their ferroelectric nature, high dielectric breakdown strength and superior processability. However, obtaining a polar phase with relaxor-like behavior in poly(vinylidene fluoride), as required for high energy storage density, is a major challenge. To date, this has been achieved using complex and expensive synthesis of copolymers and terpolymers or via irradiation with high-energy electron-beam or γ-ray radiations.

View Article and Find Full Text PDF

The intrinsic properties of nanomaterials offer promise for technological revolutions in many fields, including transportation, soft robotics, and energy. Unfortunately, the exploitation of such properties in polymer nanocomposites is extremely challenging due to the lack of viable dispersion routes when the filler content is high. We usually face a dichotomy between the degree of nanofiller loading and the degree of dispersion (and, thus, performance) because dispersion quality decreases with loading.

View Article and Find Full Text PDF

Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance.

View Article and Find Full Text PDF

This paper presents an investigation of the geometric effects within a cylindrical array luminescent solar concentrator (LSC). Photon concentration of a cylindrical LSC increases linearly with cylinder length up to 2 metres. Raytrace modelling on the shading effects of circles on their neighbours demonstrates effective incident light trapping in a cylindrical LSC array at angles of incidence between 60-70 degrees.

View Article and Find Full Text PDF

The effects of the addition of fibres of bacterial cellulose (FBC) to commercial starch of Mater-Bi(®) have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.

View Article and Find Full Text PDF

Purpose: To investigate the effects of adhesion promoting surgical adjuncts in Descemets stripping automated endothelial keratoplasty (DSAEK). The effects of air-fill pressure, duration, use of venting incisions and stromal roughening on fluid dispersion, and donor adhesion strength were examined in theoretical, optical coherence tomography (OCT), and strain gauge models of DSAEK.

Methods: OCT analysis: DSAEK modeled using a microkeratome prepared lenticule inserted under a "recipient" corneo-scleral rim mounted on an artificial anterior chamber.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a natural hydrogel, which is produced by Acetobacter xylinum (recently renamed Gluconacetobacter xylinum) in culture and constitutes of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. Here, a two-step purification process is presented that significantly improves the structural, mechanical, thermal and morphological behaviour of BC sheet processed from these hydrogels produced in static culture. Alkalisation of BC using a single-step treatment of 2.

View Article and Find Full Text PDF