Publications by authors named "Emiliani C"

In this work, the lipidomic analysis on polar components of almond, coconut, and soy beverages was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A comparison with bovine milk was also performed. A total of 30 subclasses of polar lipids, belonging mainly to glycerophospholipids and sphingolipids, and a total of 572 molecular species were identified.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites.

View Article and Find Full Text PDF

The present study investigates the chemical profile and biological activities of M. Keskin, a species endemic to Turkey, aiming to explore its potential applications in pharmacology. We assessed its phenolic and flavonoid content by employing ethyl acetate, methanol, and water as extraction solvents.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the biological properties and chemical profiles of chickweed extracts using various solvents and advanced techniques like UHPLC/MS/MS.
  • Twelve phenolic compounds, primarily flavonoids, were identified, with the water extract showing the best antioxidant capabilities and the ethyl acetate extract showing strong enzyme-inhibiting effects.
  • The findings suggest chickweed could be a valuable resource for developing products in the pharmaceutical, nutraceutical, and cosmeceutical sectors due to its significant cytotoxic effects and potential mechanisms of action against cancer-related targets.
View Article and Find Full Text PDF

The growing interest in plant-origin active molecules with medicinal properties has led to a revaluation of plants in the pharmaceutical field. Plant-derived extracellular vesicles (PDEVs) have emerged as promising candidates for next-generation drug delivery systems due to their ability to concentrate and deliver a plethora of bioactive molecules. These bilayer membranous vesicles, whose diameter ranges from 30 to 1000 nm, are released by different cell types and play a crucial role in cross-kingdom communication between plants and humans.

View Article and Find Full Text PDF

Resource-intensive processes currently hamper the discovery of bioactive peptides (BAPs) from food by-products. To streamline this process, in silico approaches present a promising alternative. This study presents a novel computational workflow to predict peptide release, bioactivity, and bioavailability, significantly accelerating BAP discovery.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive.

View Article and Find Full Text PDF

() is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling.

View Article and Find Full Text PDF

This study sheds light on a ground-breaking biochemical mechanotransduction pathway and reveals how Piezo1 channels orchestrate cell migration. We observed an increased cell migration rate in HEK293T (HEK) cells treated with Yoda1, a Piezo1 agonist, or in HEK cells overexpressing Piezo1 (HEK + P). Conversely, a significant reduction in cell motility was observed in HEK cells treated with GsMTx4 (a channel inhibitor) or upon silencing Piezo1 (HEK-P).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) can be isolated from biological fluids and cell culture medium. Their nanometric dimension, relative stability, and biocompatibility have raised considerable interest for their therapeutic use as delivery vehicles of macromolecules, namely nucleic acids and proteins. Deficiency in lysosomal enzymes and associated proteins is at the basis of a group of genetic diseases known as lysosomal storage disorders (LSDs), characterized by the accumulation of undigested substrates into lysosomes.

View Article and Find Full Text PDF

Agri-food wastes generated by industrial food processing are valorized through the extraction of biomolecules to obtain value-added products useful for various industrial applications. In the present review, we describe the valuable by-products and bioactive molecules that can be obtained from agricultural wastes and propose extracellular vesicles (EVs) as innovative nutraceutical and therapeutic compounds that could be derived from agriculture residues. To support this idea, we described the general features and roles of EVs and focused on plant-derived extracellular vesicles (PDEVs) that are considered natural carriers of bioactive molecules and are involved in intercellular communication between diverse kingdoms of life.

View Article and Find Full Text PDF

The evolution of regulatory perspectives regarding the health and nutritional properties of industrial hemp-based products ( L.) has pushed research to focus on the development of new methods for both the extraction and formulation of the bioactive compounds present in hemp extracts. While the psychoactive and medicinal properties of hemp-derived cannabinoid extracts are well known, much less has been investigated on the functional and antimicrobial properties of hemp extracts.

View Article and Find Full Text PDF
Article Synopsis
  • T-cell acute lymphoblastic leukemia (T-ALL) is a serious cancer primarily found in children and teens, with various genetic mutations leading to at least six recognized subgroups, including the dominant TAL/LMO subgroup found in 30-45% of pediatric cases.
  • The study performed lipid and metabolic analysis on four T-ALL cell lines from the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM), identifying 343 metabolites and revealing notable differences in their metabolic profiles, especially distinguishing Molt-4 as the most distinct line.
  • This research not only aids in subclassifying T-ALL cell lines but also uses bioinformatics to examine specific metabolic pathways, potentially paving
View Article and Find Full Text PDF

Edible plant and fruit-derived nanovesicles (NVs) are membrane-enclosed particles with round-shape morphology and signaling functions, which resemble mammalian cell-derived extracellular vesicles. These NVs can transmit cross-kingdom signals as they contain bioactive molecules and exert biological effects on mammalian cells. Their properties and stability in the gastrointestinal tract suggest NVs as a promising nutraceutical tool.

View Article and Find Full Text PDF

Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve.

View Article and Find Full Text PDF
Article Synopsis
  • Krabbe disease is a rare neurodegenerative condition caused by an autosomal recessive mutation, leading to psychosine buildup and loss of crucial nerve cells.
  • The Twitcher mouse serves as a key model for studying this disease, yet its lipidomic profiles in various nervous system tissues have not been extensively analyzed.
  • This study identified and quantified around 230 lipid molecular species across four tissues, revealing significant differences, particularly in the sciatic nerve, and suggesting potential genetic and enzymatic influences driving these changes.
View Article and Find Full Text PDF

Nowadays, plant-based milk consumption, as part of a healthy diet, is continuously increasing. In this paper, for the first time a lipidomic analysis on molecular species of triacylglycerol (TG) fraction of plant-based beverages (almond, soy, coconut) was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 557 TG molecular species was measured, showing significantly different profiles between milk alternatives, compared with bovine milk.

View Article and Find Full Text PDF

Here, we present novel biocompatible poly(butylene -1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison.

View Article and Find Full Text PDF

Pleurotus spp. have been gaining popularity as a source for the creation of functional foods, nutraceuticals and novel pharmaceuticals. Despite Pleurotus is a specious genus including 208 legitimate species, only a few of them such as P.

View Article and Find Full Text PDF

The pet food market is constantly expanding, and more and more attention is paid to the feeding of pets. Dry foods stand out and are often preferred due to their long shelf life, ease of administration, and low cost. In this context, dry foods are formulated from fresh meats, meat meals, or a mix of the two.

View Article and Find Full Text PDF

Introduction: Extracellular vesicles (EVs) and particles (EPs) represent reliable biomarkers for disease detection. Their role in the inflammatory microenvironment of severe COVID-19 patients is not well determined. Here, we characterized the immunophenotype, the lipidomic cargo and the functional activity of circulating EPs from severe COVID-19 patients (Co-19-EPs) and healthy controls (HC-EPs) correlating the data with the clinical parameters including the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) and the sequential organ failure assessment (SOFA) score.

View Article and Find Full Text PDF

Background: Spore Trap is an environmental detection technology, already used in the field of allergology to monitor the presence and composition of potentially inspirable airborne micronic bioparticulate. This device is potentially suitable for environmental monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in hospital, as well as in other high-risk closed environments. The aim of the present study is to investigate the accuracy of the Spore Trap system in detecting SARS-CoV-2 in indoor bioaerosol of hospital rooms.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a medicinal mushroom that grows on old trees and analyzes its different parts—specifically the cap and the hymenium—for their metabolic properties.
  • Chromatographic analysis revealed that the mushroom extracts are rich in specialized phenolic compounds, particularly in the apical part, which also demonstrated strong antimicrobial and antiradical activities.
  • The promising results suggest that these mushroom extracts could be developed into food supplements with health benefits, including antioxidant and antimicrobial effects.
View Article and Find Full Text PDF