In this work, we evaluated more than 10 antifouling layers presenting different modes of action for application in electrochemical sensors. These layers included porous materials, permselective membranes, hydrogels, silicate sol-gels, proteins, and sp hybridized carbon. To evaluate the protective effects of the antifouling modification as well as its impact on the catalyst, we adsorbed a redox mediator on the electrode surface.
View Article and Find Full Text PDFGood electronic ( = ∼5 Ω sq) and optical properties (transmittance: >83%) make indium tin oxide (ITO) an attractive electrode substrate. Despite the commercial availability of high-quality ITO and some low-cost methods for direct deposition being in use by now, the definition of patterns is still a concern. Putting their popularity and extensive use aside, the manufacturing of ITO electrodes so far lacks a rapid, highly reproducible, flexible, cost-effective, easy patterning process that could surpass difficult, time-consuming techniques such as lithography.
View Article and Find Full Text PDFThe equilibrium constant () of biochemical complex formation in aqueous buffers with high concentration (>20 wt %) of nonionic compounds can vary by orders of magnitude in comparison with the in a pure buffer. The precise molecular mechanisms of these profound changes are not known. Herein, we show up to a 1000-fold decrease of the value of DNA hybridization (at nM concentration) in standard molecular crowder systems such as PEG, dextrans, Ficoll, and glycerol.
View Article and Find Full Text PDFWe present a new electrochemical system that combines paper-based sensing and ion-transfer voltammetry, bringing the latter a step closer toward point-of-care applications. Studies at the interface between two immiscible electrolyte solutions (ITIES) are often performed to detect redox-inactive species; unfortunately, due to the inherent instability of the interface, it is rather poorly explored outside specialized laboratories. Here, we address this limitation by combining a pen-like device containing the gelled organic phase with a paper-supported aqueous phase.
View Article and Find Full Text PDFWe present an electrochemical, microfluidic system with a working electrode based on an ordered 3D array of pencil leads. The electrode array was integrated into a plexiglass/PDMS channel. We tested the setup using a simple redox probe and compared the results with computer simulations.
View Article and Find Full Text PDFWhile ion transfer studies were shown to be a promising method for fundamental electrochemistry, pharmacokinetic studies, and sensing, they suffer from inherent instability of the interface formed between the organic and aqueous phases. This limits to some extent the range of solvents which can be used and confines these studies to the laboratory. We propose here the use of paper, which has revolutionized the way we think of miniaturized analytical devices during the past decade, as a perfect substrate for ion transfer studies across the liquid-liquid interface.
View Article and Find Full Text PDFElectronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce.
View Article and Find Full Text PDFAs diabetes is considered one of the biggest health care challenges of the coming decades substantial effort is being made to develop novel glucose monitoring systems, this includes thousands of articles which are being published every year. To the question in the title, we answer an unequivocal "yes" but maybe not necessarily in the areas where most of the published research is focused.
View Article and Find Full Text PDFThe following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2016
Paper-based sensors gained almost explosive attention during the last few years. A large number of systems, often destined to resource limited settings is based on enzymatic reactions. Choice of an adequate immobilization method could significantly prolong the shelf-life of such sensors, especially in applications, where exposure to high temperatures during storage and transport is more than a threat.
View Article and Find Full Text PDFThe viability of cells cultured in microsystems for drug screening purposes is usually tested with a variety of colorimetric/fluorescent methods. In this work we propose an alternative way of assessing cell viability-flow-through sensor array that can be connected in series with cell microbioreactors as compatible detection system. It is shown, that the presented device is capable of cytotoxic effect detection and estimation of cell viability after treatment with 1,4-dioxane and 5-fluorouracil, which proves that it can be used for truly non-invasive, fast, reliable, continuous cell culture monitoring in microscale.
View Article and Find Full Text PDF