Publications by authors named "Emilia Paunescu"

Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent.

View Article and Find Full Text PDF

The assessment of diruthenium(II)-arene compounds against , , and showed a significant antibacterial activity of some compounds against , with minimum inhibitory concentration (MIC) values ranging from 1.3 to 2.6 µM, and a medium activity against , with MIC of 25 µM.

View Article and Find Full Text PDF

Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.

View Article and Find Full Text PDF

Aiming toward compounds with improved anti- activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed.

View Article and Find Full Text PDF

The synthesis, photophysical properties and antiparasitic efficacy against Toxoplasma gondii β-gal (RH strain tachyzoites expressing β-galactosidase) grown in human foreskin fibroblast monolayers (HFF) of a series of 15 new conjugates BODIPY-trithiolato-bridged dinuclear ruthenium(II)-arene complexes are reported (BODIPY=4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, derivatives used as fluorescent markers). The influence of the bond type (amide vs. ester), as well as that of the length and nature (alkyl vs.

View Article and Find Full Text PDF

Grignard reactions are an efficient way to form carbon-carbon bonds with widespread applications in large-scale processes. Classically, the electrophiles of choice to form ketones from Grignard reagents are acid chlorides. The reactions are typically catalyzed by additives such as CuCl to increase selectivity and yields.

View Article and Find Full Text PDF

is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.

View Article and Find Full Text PDF

A structure activity relationship (SAR) study of a library of 56 compounds (54 ruthenium and 2 osmium derivatives) based on the trithiolato-bridged dinuclear ruthenium(II)-arene scaffold (general formula [(η-arene)Ru(μ-SR)], symmetric and [(η-arene)Ru(μ-SR)(μ-SR)], mixed, respectively) is reported. The 56 compounds (of which 34 are newly designed drug candidates) were synthesized by introducing chemical modifications at the level of bridge thiols, and they were grouped into eight families according to their structural features. The selected fittings were guided by previous results and focused on a fine-tuning of the physico-chemical and steric properties.

View Article and Find Full Text PDF

The synthesis, characterization, and in vitro antiparasitic and anticancer activity evaluation of new conjugates containing two and three dinuclear trithiolato-bridged ruthenium(II)-arene units are presented. Antiparasitic activity was evaluated using transgenic tachyzoites constitutively expressing β-galactosidase grown in human foreskin fibroblasts (HFF). The compounds inhibited proliferation with IC values ranging from 90 to 539 nM, and seven derivatives displayed IC values lower than the reference compound pyrimethamine, which is currently used for treatment of toxoplasmosis.

View Article and Find Full Text PDF

The synthesis, characterization, photophysical and biological properties of 13 new conjugate coumarin-diruthenium(II)⋅arene complexes against Toxoplasma gondii are presented. For all conjugate organometallic unit/coumarins, an almost complete loss of fluorescence efficacy was observed. However, the nature of the fluorophore, the type of bonding, the presence and length of a linker between the coumarin dye and the ruthenium(II) moiety, and the number of dye units influenced their biological properties.

View Article and Find Full Text PDF

Following the identification of a ruthenium(II)-arene complex with an ethacrynic acid-modified imidazole ligand, which inhibits glutathione transferase (GST) and is cytotoxic to chemo-resistant cancer cells, a series of structurally related ruthenium(II)- and osmium(II)-p-cymene compounds have been prepared. In these complexes the ethacrynic acid is linked to the metals via appropriately modified pyridine ligands. The influence of the metal center and the metal:ethacrynic acid ratio on the cytotoxicity of the compounds was evaluated with the derivatives with one metal center and two ethacrynic acid moieties being the most potent against chemo-resistant A2780cisR cells (human ovarian cancer cells with acquired resistance to cisplatin).

View Article and Find Full Text PDF

Dinuclear metal complexes have emerged as a promising class of anticancer compounds with the ability to cross-link biomolecular targets. Here, we describe two novel series of phosphine-linked dinuclear ruthenium(II) p-cymene and gold(I) complexes, in which the length of the connecting poly(ethylene glycol) chain has been systematically modified. The impact of the multinuclearity, lipophilicity, and linker length on the antiproliferative activity of the compounds on tumorigenic (A2780 and A2780cisR) and nontumorigenic (HEK-293) cell lines was assessed.

View Article and Find Full Text PDF

Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate).

View Article and Find Full Text PDF

Ionic liquids doped with I2, usually resulting in the formation of polyiodide anions, are extensively used as electrolytes and in iodination reactions. Herein, NMR spectroscopy and single-crystal X-ray diffraction were used to rationalize the structures of imidazolium-based polyiodide ionic liquids in the liquid and solid states. Combined, these studies show that extensive interactions between the imidazolium cation and the resulting polyiodide anion are present, which have the net effect of lengthening, polarizing, and weakening the I-I bonds in the anion.

View Article and Find Full Text PDF

Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells.

View Article and Find Full Text PDF

Two bifunctional ruthenium(II)-p-cymene complexes with perfluorinated side chains, attached via pyridine ligands, have been evaluated in a series of in vitro and in vivo assays. Their effects on human endothelial (ECRF24 and HUVEC) cells, noncancerous human embryonic kidney (HEK-293) cells, and various human tumor cells were investigated. The complex with the shorter chain, 1, inhibits the proliferation of the tumor cell lines and ECRF24, whereas 2 selectively inhibits ECRF24 and HUVEC proliferation.

View Article and Find Full Text PDF

Pyridine- and phosphine-based ligands modified with ethacrynic acid (a broad acting glutathione transferase inhibitor) were prepared and coordinated to ruthenium(II)-arene complexes and to a ruthenium(III) NAMI-A type complex. All the compounds (ligands and complexes) were fully characterized by analytical and spectroscopic methods and, in one case, by single-crystal X-ray diffraction. The in vitro anticancer activity of the compounds was studied, with the compounds displaying moderate cytotoxicity toward the human ovarian cancer cell lines.

View Article and Find Full Text PDF

Hyperthermia used as an adjuvant with chemotherapy is highly promising in the treatment of certain cancers. Currently, the small molecule drugs used in combination with hyperthermia were not designed for this application. Herein, we report the evaluation of a chlorambucil and a ruthenium compound modified with a long fluorous chain, which exhibit thermoresponsive activity in colorectal adenocarcinoma xenografts in athymic mice in combination with mild hyperthermia (42 °C).

View Article and Find Full Text PDF

Dasatinib is an orally active nonselective tyrosine kinase inhibitor used to treat certain types of adult leukemia. By inhibiting PDGFR-β and SFKs in both tumor cells and tumor-associated endothelial cells, dasatinib inhibits tumor growth and angiogenesis. Herein, dasatinib derivatives modified with hydrophobic chains were prepared and evaluated for their in vitro antiproliferative selectivity and their in vivo antiangiogenic activity.

View Article and Find Full Text PDF

Following the identification of [Ru(η(6)-p-cymene)Cl2(1H,1H,2H,2H-perfluorodecyl-3-(pyridin-3-yl)propanoate)], a ruthenium(II)-arene complex with a perfluoroalkyl-modified ligand that displays remarkable in vitro cancer cell selectivity, a series of structurally related compounds were designed. In the new derivatives, the p-cymene ring and/or the chloride ligands are substituted by other ligands to modulate the steric bulk or aquation kinetics. The new compounds were evaluated in both in vitro (cytotoxicity and migration assays) and in vivo (chicken chorioallantoic membrane) models and were found to exhibit potent antivascular effects.

View Article and Find Full Text PDF

A ruthenium(II)-arene complex with a perfluoroalkyl-ligand was found to display remarkable selectivity toward cancer cells. IC50 values on several cancer cell lines are in the range of 25-45 μM, and no cytotoxic effect was observed on nontumorigenic (HEK-293) cells at concentrations up to 500 μM (the maximum concentration tested). Consequently, this complex was used as the basis for the development of a number of related derivatives, which were screened in cancerous and noncancerous cell lines.

View Article and Find Full Text PDF

Hydrogen bonding in ionic liquids based on the 1-(2'-hydroxylethyl)-3-methylimidazolium cation ([C₂OHmim](+)) and various anions ([A](-)) of differing H-bond acceptor strength, viz. hexafluorophosphate [PF6](-), tetrafluoroborate [BF₄](-), bis(trifluoromethanesulfonimide) [Tf₂N](-), trifluoromethylsulfonate [OTf](-), and trifluoroacetate [TFA](-), was studied by a range of spectroscopic and computational techniques and, in the case of [C₂OHmim][PF6], by single crystal X-ray diffraction. The first quantitative estimates of the energy (E(HB)) and the enthalpy (-ΔH(HB)) of H-bonds in bulk ILs were obtained from a theoretical analysis of the solid-state electron-density map of crystalline [C₂OHmim][PF6] and an analysis of the IR spectra in crystal and liquid samples.

View Article and Find Full Text PDF

Organophosphorus nerve agents (OPNAs) are highly toxic compounds that represent a threat to both military and civilian populations. They cause an irreversible inhibition of acetylcholinesterase (AChE), by the formation of a covalent P-O bond with the catalytic serine. Among the present treatment of nerve agents poisoning, pyridinium and bis-pyridinium aldoximes are used to reactivate this inhibited enzyme but these compounds do not readily cross the blood brain barrier (BBB) due to their permanent cationic charge and thus cannot efficiently reactivate cholinesterases in the central nervous system (CNS).

View Article and Find Full Text PDF

A new pro-fluorescent probe aimed at a HTS assay of scavengers is able to selectively and efficiently cleave the P-S bond of organophosphorus nerve agents and by this provides non-toxic phosphonic acid has been designed and synthesised. The previously described pro-fluorescent probes were based on a conventional activated P-Oaryl bond cleavage, whereas our approach uses a self-immolative linker strategy that allows the detection of phosphonothioase activity with respect to a non-activated P-Salkyl bond. Further, we have also developed and optimised a high-throughput screening assay for the selection of decontaminants (chemical or biochemical scavengers) that could efficiently hydrolyse highly toxic V-type nerve agents.

View Article and Find Full Text PDF

The prophylactic administration of amodiaquine (AQ), a 4-aminoquinoline antimalarial drug, has been associated with side effects such as agranulocytosis and liver damage. The toxicity of this drug is mediated by amodiaquine quinone-imine, an electrophilic metabolite. Replacement of the 4'-hydroxy function of AQ with various alkyl, aryl, or heteroaryl substituents would provide analogues that avoid metabolism to potentially toxic derivatives.

View Article and Find Full Text PDF