The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.
View Article and Find Full Text PDFPolycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation.
View Article and Find Full Text PDFNative gel electrophoresis enables separation of cellular proteins in their non-denatured state. In experiments aimed at analysing proteins in higher order or multimeric assemblies (i.e.
View Article and Find Full Text PDFThe majority of women diagnosed with lymph node-negative breast cancer are unnecessarily treated with damaging chemotherapeutics after surgical resection. This highlights the importance of understanding and more accurately predicting patient prognosis. In the present study, we define the transcriptional networks regulating well-established prognostic gene expression signatures.
View Article and Find Full Text PDFPolycomb group proteins are repressive chromatin modifiers with essential roles in metazoan development, cellular differentiation and cell fate maintenance. How Polycomb proteins access active chromatin to confer transcriptional silencing during lineage transitions remains unclear. Here we show that the Polycomb repressive complex 2 (PRC2) component PHF19 binds trimethylated histone H3 Lys36 (H3K36me3), a mark of active chromatin, via its Tudor domain.
View Article and Find Full Text PDF