Background: The fossil record provides the unique opportunity to observe evolution over millions of years, but is known to be incomplete. While incompleteness varies spatially and is hard to estimate for empirical sections, computer simulations of geological processes can be used to examine the effects of the incompleteness in silico. We combine simulations of different modes of evolution (stasis, (un)biased random walks) with deposition of carbonate platforms strata to examine how well the mode of evolution can be recovered from fossil time series, and how test results vary between different positions in the carbonate platform and multiple stratigraphic architectures generated by different sea level curves.
View Article and Find Full Text PDFVertebrates use the phosphate mineral apatite in their skeletons, which allowed them to develop tissues such as enamel, characterized by an outstanding combination of hardness and elasticity. It has been hypothesized that the evolution of the earliest vertebrate skeletal tissues, found in the teeth of the extinct group of conodonts, was driven by adaptation to dental function. We test this hypothesis quantitatively and demonstrate that the crystallographic order increased throughout the early evolution of conodont teeth in parallel with morphological adaptation to food processing.
View Article and Find Full Text PDFConodonts were the first vertebrates to develop mineralized dental tools, known as elements. Recent research suggests that conodonts were macrophagous predators and/or scavengers but we do not know how this feeding habit emerged in the earliest coniform conodonts, since most studies focus on the derived, 'complex' conodonts. Previous modelling of element position and mechanical properties indicate they were capable of food processing.
View Article and Find Full Text PDFHeterocorals represent an enigmatic group of Palaeozoic corals, known from relatively short time intervals in the Devonian and Carboniferous periods. The major differences between Heterocorallia and other Palaeozoic corals are the lack of an external theca (epitheca), lack of calices and the presence of dichotomously dividing septa-like structures. Heterocoral skeleton was presumably externally covered by the soft tissue and each branch of their skeleton has, until now, been regarded as a corallite-a skeleton of a single polyp.
View Article and Find Full Text PDFScanning electron microscope (SEM) imaging of fossils allows unlocking ultrastructural information about their skeletal tissues, but sample preparation of biominerals forming their skeletons requires time, patience, and knowledge. SEM and associated analytical methods allow the observation of internal microstructure, shedding light on function, growth and chemistry. Sample preparation is the process by which material is fixed within a medium (e.
View Article and Find Full Text PDFA fundamental question in ecology is how the success of a taxon changes through time and what drives this change. This question is commonly approached using trajectories averaged over a group of taxa. Using results from probability theory, we show analytically and using examples that averaged trajectories will be more symmetric as the number of averaged trajectories increases, even if none of the original trajectories they were derived from is symmetric.
View Article and Find Full Text PDFConodont elements are the earliest mineralized vertebrate dental tools and the only ones capable of extensive repair. Two models of conodont growth, as well as the presence of a larval stage, have been hypothesized. We analysed normally and pathologically developed elements to test these hypotheses and identified three ontogenetic stages characterized by different anisometric growth and morphology.
View Article and Find Full Text PDFThis study investigates stable isotope signatures of five species of Silurian and Devonian deep-water, ahermatypic rugose corals, providing new insights into isotopic fractionation effects exhibited by Palaeozoic rugosans, and possible role of diagenetic processes in modifying their original isotopic signals. To minimize the influence of intraskeletal cements on the observed signatures, the analysed specimens included unusual species either devoid of large intraskeletal open spaces ('button corals': Microcyclus, Palaeocyclus), or typified by particularly thick corallite walls (Calceola). The corals were collected at four localities in the Holy Cross Mountains (Poland), Mader Basin (Morocco) and on Gotland (Sweden), representing distinct diagenetic histories and different styles of diagenetic alteration.
View Article and Find Full Text PDFMaize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification.
View Article and Find Full Text PDF