A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has drawn considerable attention for its efficacy against certain types of cancers. It shows however limits in the case of deep cancers, favoring tumor recurrence under suboptimal conditions. More insight into the molecular mechanisms of PDT-induced cytotoxicity and cytoprotection is essential to extend and strengthen this therapeutic modality.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) against cancer has gained attention due to the successful outcome in some cancers, particularly those on the skin. However, there have been limitations to PDT applications in deep cancers and, occasionally, PDT treatment resulted in tumor recurrence. A better understanding of the underlying molecular mechanisms of PDT-induced cytotoxicity and cytoprotection should facilitate the development of better approaches to inhibit the cytoprotective effects and also augment PDT-mediated cytotoxicity.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO) by up-regulating nitric oxide synthases (NOS). Since non-optimal PDT often causes tumor recurrence, understanding of the molecular pathways involved in the photoprocess is a challenging task for scientists.
View Article and Find Full Text PDFProstate cancer (PC) represents the most common type of cancer among males and is the second leading cause of cancer death in men in Western society. Current options for PC therapy remain unsatisfactory, since they often produce uncomfortable long-term side effects, such as impotence (70%) and incontinence (5-20%) even in the first stages of the disease. Light-triggered therapies, such as photodynamic therapy, have the potential to provide important advances in the treatment of localized and partially metastasized prostate cancer.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO) by up-regulating nitric oxide synthases (NOS). Since non-optimal PDT often causes tumor recurrence, understanding the molecular pathways involved in the photoprocess is a challenging task for scientists.
View Article and Find Full Text PDFBackground: Porphyrin TMPyP4 (P4) and its C14H28-alkyl derivative (C14) are G-quadruplex binders and singlet oxygen (1O2) generators. In contrast, TMPyP2 (P2) produces 1O2 but it is not a G-quadruplex binder. As their photosensitizing activity is currently undefined, we report in this study their efficacy against a melanoma skin tumour and describe an in vitro mechanistic study which gives insights into their anticancer activity.
View Article and Find Full Text PDFCell recurrence in cancer photodynamic therapy (PDT) is an important issue that is poorly understood. It is becoming clear that nitric oxide (NO) is a modulator of PDT. By acting on the NF-κB/Snail/RKIP survival/anti-apoptotic loop, NO can either stimulate or inhibit apoptosis.
View Article and Find Full Text PDF