Large-scale breeding failures, such as offspring die-offs, can disproportionately impact wildlife populations that are characterized by a few large colonies. However, breeding monitoring-and thus investigations of such die-offs-is especially challenging in species with long reproductive cycles. We investigate two unresolved dramatic breeding failures that occurred in consecutive years (2009 and 2010) in a large king penguin Aptenodytes patagonicus colony, a long-lived species with a breeding cycle lasting over a year.
View Article and Find Full Text PDFClimate change is transforming bioenergetic landscapes, challenging behavioral and physiological coping mechanisms. A critical question involves whether animals can adjust behavioral patterns and energy expenditure to stabilize fitness given reconfiguration of resource bases, or whether limits to plasticity ultimately compromise energy balance. In the Arctic, rapidly warming temperatures are transforming food webs, making Arctic organisms strong models for understanding biological implications of climate change-related environmental variability.
View Article and Find Full Text PDFCombined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (), a keystone Arctic seabird.
View Article and Find Full Text PDFMany animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied.
View Article and Find Full Text PDFBreeding success is often correlated with climate, but the underlying bottom-up mechanisms remain elusive-particularly in marine environments. Consequently, conservation plans of many species often consider climate change as a unilateral threat, ignoring that even nearby populations can show contradicting trends with climate. Better understanding the relationship between climate and environment at different scales can help us interpret local differences in population trends, ultimately providing better tools to evaluate the global response of a species to threats such as global warming.
View Article and Find Full Text PDFThe growing field of aeroecology is limited by difficulties associated with sampling in the air column. Aerial insects are particularly hard to sample, despite being the main prey in the air column, with some recent studies attempting to use drones as a collection method. We conducted a study to determine the optimal drone settings for collecting insects above the canopy, where drones are seldom used.
View Article and Find Full Text PDFAccelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial and aquatic species. However, a recent reappraisal of the method showed that relationships between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of non-mechanical costs increases. Aquatic air breathing species often exemplify this pattern, as buoyancy, thermoregulation and other physiological mechanisms disproportionately affect oxygen consumption during dives.
View Article and Find Full Text PDFUnmanned aerial vehicles (UAVs) provide an opportunity to rapidly census wildlife in remote areas while removing some of the hazards. However, wildlife may respond negatively to the UAVs, thereby skewing counts. We surveyed four species of Arctic cliff-nesting seabirds (glaucous gull Larus hyperboreus, Iceland gull Larus glaucoides, common murre Uria aalge and thick-billed murre Uria lomvia) using a UAV and compared censusing techniques to ground photography.
View Article and Find Full Text PDF