Publications by authors named "Emile Bol"

The tungsten metallome of the hyperthermophilic archaeon Pyrococcus furiosus has been investigated using electroanalytical metal analysis and native-native 2D-PAGE with the radioactive tungsten isotope (187)W (t(1/2) = 23.9 h). P.

View Article and Find Full Text PDF

Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus is a homotetrameric protein with one tungstodipterin and one [4Fe-4S] cubane per 69-kDa subunit. The enzyme kinetics have been studied under steady-state conditions at 80 degrees C and pre-steady state conditions at 50 degrees C, in the latter case via monitoring of the relatively weak (epsilon approximately 2 mM(-1) cm(-1)) optical spectrum of the tungsten cofactor. The steady-state data are consistent with a substrate substituted-enzyme mechanism for three substrates (formaldehyde plus two ferredoxin molecules).

View Article and Find Full Text PDF

Formaldehyde oxidoreductase (FOR) is one of the tungstopterin iron-sulfur enzymes of the five-membered family of aldehyde oxidoreductases in the hyperthermophilic archaeon Pyrococcus furiosus. In dye-mediated equilibrium redox titrations, the tungsten in active P. furiosus FOR is a two-electron acceptor, W(VI/IV).

View Article and Find Full Text PDF

WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths.

View Article and Find Full Text PDF