Proc Natl Acad Sci U S A
January 2024
The emergence of an RNA replicase capable of self-replication is considered an important stage in the origin of life. RNA polymerase ribozymes (PR) - including a variant that uses trinucleotide triphosphates (triplets) as substrates - have been created by in vitro evolution and are the closest functional analogues of the replicase, but the structural basis for their function is poorly understood. Here we use single-particle cryogenic electron microscopy (cryo-EM) and high-throughput mutation analysis to obtain the structure of a triplet polymerase ribozyme (TPR) apoenzyme and map its functional landscape.
View Article and Find Full Text PDFNoncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging.
View Article and Find Full Text PDFRNA-catalyzed RNA replication is widely considered a key step in the emergence of life's first genetic system. However, RNA replication can be impeded by the extraordinary stability of duplex RNA products, which must be dissociated for re-initiation of the next replication cycle. Here, we have explored rolling circle synthesis (RCS) as a potential solution to this strand separation problem.
View Article and Find Full Text PDFTwo types of clinically important nucleic acid biomarkers, microRNA (miRNA) and circulating tumor DNA (ctDNA) were detected and quantified from human serum using an amplification-free fluorescence hybridization assay. Specifically, miRNAs hsa-miR-223-3p and hsa-miR-486-5p with relevance for rheumatoid arthritis and cancer related mutations BRAF and KRAS of ctDNA were directly measured. The required oligonucleotide probes for the assay were rationally designed and synthesized through a novel "clickable" approach which is time and cost-effective.
View Article and Find Full Text PDFBackground: Camptothecin (CPT) and its derivatives are currently used as second- or third-line treatment for patients with endocrine-resistant breast cancer (BC). These drugs convert nuclear enzyme DNA topoisomerase I (TOP1) to a cell poison with the potential to damage DNA by increasing the half-life of TOP1-DNA cleavage complexes (TOP1cc), ultimately resulting in cell death. In small and non-randomized trials for BC, researchers have observed extensive variation in CPT response rates, ranging from 14 to 64%.
View Article and Find Full Text PDFDNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling.
View Article and Find Full Text PDFThe continuous need for the development of new small molecule anti-cancer drugs calls for easily accessible sensor systems for measuring the effect of vast numbers of new drugs on their potential cellular targets. Here we demonstrate the use of an optical DNA biosensor to unravel the inhibitory mechanism of a member of a new family of small molecule human topoisomerase I inhibitors, the so-called indeno-1,5-naphthyridines. By analysing human topoisomerase I catalysis on the biosensor in the absence or presence of added drug complemented with a few traditional assays, we demonstrate that the investigated member of the indeno-1,5-naphthyridine family inhibited human topoisomerase I activity by blocking enzyme-DNA dissociation.
View Article and Find Full Text PDFThe so-called Rolling Circle Amplification allows for amplification of circular DNA structures in a manner that can be detected in real-time using nucleotide-based molecular beacons that unfold upon recognition of the DNA product, which is being produced during the amplification process. The unfolding of the molecular beacons results in a fluorescence increase as the Rolling Circle Amplification proceeds. This can be measured in a fluorometer.
View Article and Find Full Text PDFHuman DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives.
View Article and Find Full Text PDFWe demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12 double-stranded B-DNA helices that constituted the edges of the structure. The double stranded helices were interrupted by short single-stranded thymidine linkers constituting the cage corners except for one, which was composed by four 32 nucleotide long stretches of DNA with a sequence that allowed them to fold into hairpin structures.
View Article and Find Full Text PDFReal-time detection of enzyme activities may present the easiest and most reliable way of obtaining quantitative analyses in biological samples. We present a new DNA-biosensor capable of detecting the activity of the potential anticancer drug target tyrosyl-DNA phosphodiesterase 1 (TDP1) in a very simple, high throughput, and real-time format. The biosensor is specific for Tdp1 even in complex biological samples, such as human cell extracts, and may consequently find future use in fundamental studies as well as a cancer predictive tool allowing fast analyses of diagnostic cell samples such as biopsies.
View Article and Find Full Text PDFSensors capable of quantitative real-time measurements may present the easiest and most accurate way to study enzyme activities. Here we present a novel DNA-based sensor for specific and quantitative real-time measurement of the enzymatic activity of the essential human enzyme, topoisomerase I. The basic design of the sensor relies on two DNA strands that hybridize to form a hairpin structure with a fluorophore-quencher pair.
View Article and Find Full Text PDFWe present an attractive new system for the specific and sensitive detection of the malaria-causing Plasmodium parasites. The system relies on isothermal conversion of single DNA cleavage-ligation events catalyzed specifically by the Plasmodium enzyme topoisomerase I to micrometer-sized products detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite/μL.
View Article and Find Full Text PDF