Publications by authors named "Emil Korczeniewski"

Superhydrophobic systems have fascinated the human kind since the earliest observations of the repellence of water droplets by biological systems. Currently, superhydrophobic materials (SHMs), often inspired by nature and engineered as thin coatings, become an important class of complex systems with numerous industrial implementations. The most important applications of SHMs cover waterproof, self-cleaning, anti-/deicing, anti-fogging, and catalytic systems/units, e.

View Article and Find Full Text PDF

The design of shielding materials against ionizing radiation while simultaneously displaying enhanced multifunctional characteristics remains challenging. Here, for the first time, we present moldable paraffin-based iron nano- and microcomposites attenuating γ- and X-radiation. The moldability was gained by the warmth-of-hands-driven plasticity, which allowed for obtaining a specific shape of the composites at room temperature.

View Article and Find Full Text PDF

Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp-carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants.

View Article and Find Full Text PDF

Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation.

View Article and Find Full Text PDF

Silicon is a widely applied material and the wetting of silicon surface is an important phenomenon. However, contradictions in the literature appear considering the value of the water contact angle (WCA). The purpose of this study is to present a holistic experimental and theoretical approach to the WCA determination.

View Article and Find Full Text PDF

It is well known that carbon nanotube (CNT) oxidation (usually with concentrated HNO) is a major step before the electrophoretic deposition (EPD). However, the recent discovery of the "onion effect" proves that multiwalled carbon nanotubes are not only oxidized, but a simultaneous unsheathing process occurs. We present the first report concerning the influence of unsheathing on the properties of the thus-formed CNT surface layer.

View Article and Find Full Text PDF

We demonstrate Ullmann-type reactions as novel and advantageous functionalization of carbon nanotubes (CNTs) toward tunable surface chemistry. The functionalization routes comprise -, -, and -arylation of chlorinated CNTs. We confirm the versatility and efficiency of the reaction allowing functionalization degrees up to 3.

View Article and Find Full Text PDF

Wetting is very common phenomenon, and it is well documented that the wettability of a solid depends on the surface density of adsorbed airborne hydrocarbons. This "hydrocarbon hypothesis" has been experimentally confirmed for different surfaces, for example, graphene, TiO, and SiO; however, there are no scientific reports describing the influence of airborne contaminants on the water contact angle (WCA) value measured on the polytetrafluoroethylene (PTFE) surface. Using experimental data showing the influence of airborne hydrocarbons on the wettability of graphene, gold and PTFE by water, together with Molecular Dynamics simulation results we prove that the relation between the WCA and the surface concentration of hydrocarbons ( n-decane, n-tridecane, and n-tetracosane) is more complex than has been assumed up until now.

View Article and Find Full Text PDF