Publications by authors named "Emil Khisamutdinov"

Electrochemical scanning tunneling microscopy (EC-STM) and electrochemical quartz crystal microbalance (E-QCM) techniques in combination with DFT calculations have been applied to reveal the static phase and the phase transition of copper underpotential deposition (UPD) on a gold electrode surface. EC-STM demonstrated, for the first time, the direct visualization of the disintegration of (√3 × √3)R30° copper UPD adlayer with coadsorbed SO while changing sample potential () toward the redox Pa2/Pc2 peaks, which are associated with the phase transition between the Cu UPD (√3 × √3)R30° phase II and disordered randomly adsorbed phase III. DFT calculations show that SO binds three oxygens to the bridge sites of the copper with sulfate being located directly above the copper vacancy in the (√3 × √3)R30° adlayer, whereas the remaining oxygen of the sulfate points away from the surface.

View Article and Find Full Text PDF

We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs.

View Article and Find Full Text PDF

The advances in nucleic acid nanotechnology have given rise to various elegantly designed structural complexes fabricated from DNA, RNA, chemically modified RNA strands, and their mixtures. The structural properties of NA nanoparticles (NANP) generally dictate and significantly impact biological function; and thus, it is critical to extract information regarding relative stabilities of the different structural forms. The adequate stability assessment requires knowledge of thermodynamic parameters that can be empirically derived using conventional UV-melting technique.

View Article and Find Full Text PDF

In the field of nucleic acid nanotechnology and therapeutics, there is an imperative need to improve the oligodeoxynucleotides' (ODNs) properties by either chemical modification of the oligonucleotides' structure or to covalently link them to a reporter or therapeutic moieties that possess biologically relevant properties. The chemical conjugation can thus significantly improve the intrinsic properties not only of ODNs but also reporter/therapeutic molecules. Bioconjugation of nucleic acids to small molecules also serves as a nano-delivery facility to transport various functionalities to specific targets.

View Article and Find Full Text PDF

We introduce a toehold-mediated strand displacement strategy for regulated shape-switching of nucleic acid nanoparticles (NANPs) enabling their sequential transformation from triangular to hexagonal architectures at isothermal conditions. The successful shape transitions were confirmed by electrophoretic mobility shift assays, atomic force microscopy, and dynamic light scattering. Furthermore, implementation of split fluorogenic aptamers allowed for monitoring the individual transitions in real time.

View Article and Find Full Text PDF

Nucleic acid-based therapeutics involves the conjugation of small molecule drugs to nucleic acid oligomers to surmount the challenge of solubility, and the inefficient delivery of these drug molecules into cells. "Click" chemistry has become popular conjugation approach due to its simplicity and high conjugation efficiency. However, the major drawback of the conjugation of oligonucleotides is the purification of the products, as traditionally used chromatography techniques are usually time-consuming and laborious, requiring copious quantities of materials.

View Article and Find Full Text PDF

The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.

View Article and Find Full Text PDF

Sequence variation in a widespread, recurrent, structured RNA 3D motif, the Sarcin/Ricin (S/R), was studied to address three related questions: First, how do the stabilities of structured RNA 3D motifs, composed of non-Watson-Crick (non-WC) basepairs, compare to WC-paired helices of similar length and sequence? Second, what are the effects on the stabilities of such motifs of isosteric and non-isosteric base substitutions in the non-WC pairs? And third, is there selection for particular base combinations in non-WC basepairs, depending on the temperature regime to which an organism adapts? A survey of large and small subunit rRNAs from organisms adapted to different temperatures revealed the presence of systematic sequence variations at many non-WC paired sites of S/R motifs. UV melting analysis and enzymatic digestion assays of oligonucleotides containing the motif suggest that more stable motifs tend to be more rigid. We further found that the base substitutions at non-Watson-Crick pairing sites can significantly affect the thermodynamic stabilities of S/R motifs and these effects are highly context specific indicating the importance of base-stacking and base-phosphate interactions on motif stability.

View Article and Find Full Text PDF

Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences.

View Article and Find Full Text PDF

Background: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses.

View Article and Find Full Text PDF

Nano-objects made of nucleic acids are becoming promising materials in the biomedical field. This is, in part, due to DNA and RNA self-assembly properties that can be accurately computed to fabricate various complex nanoarchitectures of 2D and 3D shapes. The nanoparticles can be assembled from DNA, RNA, and chemically modified oligonucleotide mixtures which, in turn, influence their chemical and biophysical properties.

View Article and Find Full Text PDF

Nucleic acid-based assemblies that interact with each other and further communicate with the cellular machinery in a controlled manner represent a new class of reconfigurable materials that can overcome limitations of traditional biochemical approaches and improve the potential therapeutic utility of nucleic acids. This notion enables the development of novel biocompatible 'smart' devices and biosensors with precisely controlled physicochemical and biological properties. We extend this novel concept by designing RNA-DNA fibers and polygons that are able to cooperate in different human cell lines and that have defined immunostimulatory properties confirmed by ex vivo experiments.

View Article and Find Full Text PDF

RNA aptamers that bind non-fluorescent dyes and activate their fluorescence are highly sensitive, nonperturbing, and convenient probes in the field of synthetic biology. These RNA molecules, referred to as light-up aptamers, operate as molecular nanoswitches that alter folding and fluorescence function in response to ligand binding, which is important in biosensing and molecular computing. Herein, we demonstrate a conceptually new generation of smart RNA nano-devices based on malachite green (MG)-binding RNA aptamer, which fluorescence output controlled by addition of short DNA oligonucleotides inputs.

View Article and Find Full Text PDF

Nucleic acid nanoparticles (NANPs) have evolved as a new class of therapeutics with the potential to detect and treat diseases. Despite tremendous advancements in NANP development, their immunotoxicity, one of the major impediments in clinical translation of traditional therapeutic nucleic acids (TNAs), has never been fully characterized. Here, we describe the first systematically studied immunological recognition of 25 representative RNA and DNA NANPs selected to have different design principles and physicochemical properties.

View Article and Find Full Text PDF
Article Synopsis
  • * A set of 16 customizable nanoparticle platforms based on nucleic acids is developed, allowing for controlled self-assembly that can modulate immune responses effectively.
  • * Key properties like molecular weight, melting temperature, and half-life are identified as critical factors predicting the immunomodulatory activity of these nanoparticles, paving the way for designing new, predictable therapeutic tools.
View Article and Find Full Text PDF

Temperature gradient gel electrophoresis (TGGE) is a powerful tool used to analyze the thermal stabilities of nucleic acids. While TGGE is a decades-old technique, it has recently gained favor in the field of RNA nanotechnology, notably in assessing the thermal stabilities of RNA nanoparticles (NPs). With TGGE, an electrical current and a linear temperature gradient are applied simultaneously to NP-loaded polyacrylamide gel, separating the negatively charged NPs based on their thermal behavior (a more stable RNA complex will remain intact through higher temperature ranges).

View Article and Find Full Text PDF

We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities.

View Article and Find Full Text PDF

RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.

View Article and Find Full Text PDF

Constructing containers with defined shape and size to load and protect therapeutics and subsequently control their release in the human body has long been a dream. The fabrication of 3D RNA prisms, characterized by atomic force microscopy, cryo-electron microscopy, dynamic light scattering, and polyacrylamide gel electrophoresis, is reported for the loading and protection of small molecules, proteins, small RNA molecules, and their controlled release.

View Article and Find Full Text PDF

RNA nanotechnology is rapidly emerging. Due to advantageous pharmacokinetics and favorable in vivo biodistribution, RNA nanoparticles have shown promise in targeted delivery of therapeutics. RNA nanotechnology applies bottom-up assembly, thus elucidation of the mechanism of interaction between multiple components is of fundamental importance.

View Article and Find Full Text PDF

Precise shape control of architectures at the nanometer scale is an intriguing but extremely challenging facet. RNA has recently emerged as a unique material and thermostable building block for use in nanoparticle construction. Here, we describe a simple method from design to synthesis of RNA triangle, square, and pentagon by stretching RNA 3WJ native angle from 60° to 90° and 108°, using the three-way junction (3WJ) of the pRNA from bacteriophage phi29 dsDNA packaging motor.

View Article and Find Full Text PDF

Modulation of immune response is important in cancer immunotherapy, vaccine adjuvant development and inflammatory or immune disease therapy. Here we report the development of new immunomodulators via control of shape transition among RNA triangle, square and pentagon. Changing one RNA strand in polygons automatically induced the stretching of the interior angle from 60° to 90° or 108°, resulting in self-assembly of elegant RNA triangles, squares and pentagons.

View Article and Find Full Text PDF

Recent advances in RNA nanotechnology allow the rational design of various nanoarchitectures. Previous methods utilized conserved angles from natural RNA motifs to form geometries with specific sizes. However, the feasibility of producing RNA architecture with variable sizes using native motifs featuring fixed sizes and angles is limited.

View Article and Find Full Text PDF

The emerging field of RNA nanotechnology necessitates creation of functional RNA nanoparticles but has been limited by particle instability. It has been shown that the three-way junction of bacteriophage phi29 motor pRNA has unusual stability and can self-assemble from three fragments with high efficiency. It is generally believed that RNA and DNA folding is energy landscape-dependent, and the folding of RNA is driven by enthalpy.

View Article and Find Full Text PDF

RNA is a polyribonucleic acid belonging to a special class of anionic polymers, holding a unique property of self-assembly that is controllable in the construction of structures with defined size, shape, and stoichiometry. We report here the use of RNA as polymers to fabricate boiling-resistant triangular nanoscaffolds, which were used to construct hexagons and patterned hexagonal arrays. The RNA triangular scaffolds demonstrated promising potential to construct fluorogenic probes and therapeutic agents as functionalization with siRNA, ribozyme, folate, and fluorogenic RNA aptamers revealed independent functional activity of each RNA moiety.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondus66njdh291hs97717kkuak4hkldf42): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once