Background: There is increasing concern regarding the lack of physicians and underresourcing of the medical system in Canada. The training of orthopedic surgeons has emerged as an area of particular concern. The purpose of this study was to gain insight into the outcomes of graduates of orthopedic surgery residency programs in Ontario in the last 30 years.
View Article and Find Full Text PDFAims: We aimed to compare reoperations following distal radial fractures (DRFs) managed with early fixation versus delayed fixation following initial closed reduction (CR).
Methods: We used administrative databases in Ontario, Canada, to identify DRF patients aged 18 years or older from 2003 to 2016. We used procedural and fee codes within 30 days to determine which patients underwent early fixation (≤ seven days) or delayed fixation following CR.
Int J Numer Method Biomed Eng
November 2024
Comminuted proximal humerus fractures are often repaired by metal plates, but potentially still experience bone refracture, bone "stress shielding," screw perforation, delayed healing, and so forth. This "proof of principle" investigation is the initial step towards the design of a new plate using alternative materials to address some of these problems. Finite element modeling was used to create design graphs for bone stress, plate stress, screw stress, and interfragmentary motion via three different fixations (no, 1, or 2 "kickstand" [KS] screws across the fracture) using a wide range of plate elastic moduli (E = 5-200 GPa).
View Article and Find Full Text PDFBone fracture plates are usually made from titanium alloy or stainless steel, which are much stiffer than bone. However, overly stiff plates can restrict axial interfragmentary motion at the fracture leading to delayed callus formation and healing, as well as causing bone "stress shielding" under the plate leading to bone atrophy, bone resorption, and plate loosening. Consequently, there have been many prior efforts to develop nonmetallic bone fracture plates with customized material properties using synthetic fibers (e.
View Article and Find Full Text PDFAs North America is largely industrialized with a variety of available private transportation options, trauma is a common occurrence, resulting in significant burdens of disability and costs to the health care system. To meet increasing trauma care needs, there is a robust organization of trauma and rehabilitation systems, particularly within the United States and Canada. The American and Canadian health care systems share multiple similarities, including well-equipped Level I trauma centers, specialized inpatient rehabilitation units for polytrauma patients, and thorough evaluations for recovery and post-discharge placement.
View Article and Find Full Text PDFBackground: The timing of major fracture care in polytrauma patients has a relevant impact on outcomes. Yet, standardized treatment strategies with respect to concomitant injuries are rare. This study aims to provide expert recommendations regarding the timing of major fracture care in the presence of concomitant injuries to the brain, thorax, abdomen, spine/spinal cord, and vasculature, as well as multiple fractures.
View Article and Find Full Text PDFThe goal of this article was to review studies on distal humerus fracture plates (DHFPs) to understand the biomechanical influence of systematically changing the plate or screw variables. The problem is that DHFPs are commonly used surgically, although complications can still occur, and it is unclear if implant configurations are always optimized using biomechanical criteria. A systematic search of the PubMed database was conducted to identify English-language biomechanical optimization studies of DHFPs that parametrically altered plate and/or screw variables to analyze their influence on engineering performance.
View Article and Find Full Text PDFBackground: This study experimentally validated a computationally optimized screw number and screw distribution far cortical locking distal femur fracture plate and compared the results to traditional implants.
Methods: 24 artificial femurs were osteotomized with a 10 mm fracture gap 60 mm proximal to the intercondylar notch. Three fixation constructs were used.
Bone fracture plates are usually made from steel or titanium, which are much stiffer than cortical bone. This may cause bone 'stress shielding' (i.e.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2023
Currently, there is no established finite element (FE) method to apply physiologically realistic loads and constraints to the humerus. This FE study showed that 2 'simple' methods involving direct head loads, no head constraints, and rigid elbow or mid-length constraints created excessive stresses and bending. However, 2 'intermediate' methods involving direct head loads, but flexible head and elbow constraints, produced lower stresses and bending.
View Article and Find Full Text PDFThe management of periprosthetic fractures with unstable prosthetic implants is a challenging and commonly encountered problem. It is important to address the many current issues and controversies regarding the treatment of periprosthetic fractures with revision total joint arthroplasty. Key strategies to optimize surgical decision making around the use of arthroplasty and management of complications following these complex injuries will be addressed.
View Article and Find Full Text PDFThe fixation of periprosthetic fractures remains challenging and controversial. It is important to achieve consensus opinions regarding the management of stable periprosthetic fractures with internal fixation. Key strategies to optimize surgical decision making and fixation and manage complications following these difficult injuries are addressed.
View Article and Find Full Text PDFThe management of periprosthetic fractures remains challenging and controversial. There continues to be a significant burden of disease and substantial resource implications associated with fractures following total joint arthroplasty. Achieving consensus opinions regarding the prevention and treatment of this problem has important implications given the profound effect on patient outcomes.
View Article and Find Full Text PDFBackground: Proximal humerus locked plates (PHLPs) are widely used for fracture surgery. Yet, non-union, malunion, infection, avascular necrosis, screw cut-out (i.e.
View Article and Find Full Text PDFBiomechanics investigators are interested in experimentally measuring stresses experienced by dental structures, whole bones, joint replacements, soft tissues, normal limbs, etc. To do so, various experimental methods have been used that are based on acoustic, optical, piezo-resistive, or other principles, like digital image correlation, fiber optic sensors, photo-elasticity, strain gages, ultrasound, etc. Several biomechanical review papers have surveyed these research technologies, but they do not mention thermography.
View Article and Find Full Text PDFBiomechanics researchers often experimentally measure static or fluctuating dynamic contact forces, areas, and stresses at the interface of natural and artificial joints, including the shoulders, elbows, hips, and knees. This information helps explain joint contact mechanics, as well as mechanisms that may contribute to disease, damage, and degradation. Currently, the most common in vitro experimental technique involves a thin pressure-sensitive film inserted into the joint space; but, the film's finite thickness disturbs the joint's ordinary articulation.
View Article and Find Full Text PDFBiomechanical engineers and physicists commonly employ biological bone for biomechanics studies, since they are good representations of living bone. Yet, there are challenges to using biological bone, such as cost, degradation, disease, ethics, shipping, sourcing, storage, variability, etc. Therefore, the Synbone® company has developed a series of synthetic bones that have been used by biomechanical investigators to offset some drawbacks of biological bone.
View Article and Find Full Text PDFBiomedical engineers and physicists frequently use human or animal bone for orthopaedic biomechanics research because they are excellent approximations of living bone. But, there are drawbacks to biological bone, like degradation over time, ethical concerns, high financial costs, inter-specimen variability, storage requirements, supplier sourcing, transportation rules, etc. Consequently, since the late 1980s, the Sawbones® company has been one of the world's largest suppliers of artificial bones for biomechanical testing that counteract many disadvantages of biological bone.
View Article and Find Full Text PDFSevere open fractures present challenges to orthopaedic surgeons worldwide, with increased risks of significant complications. Although different global regions have different resources and systems, there continue to be many consistent approaches to open fracture care. Management of these complex injures continues to evolve in areas ranging from timing of initial operative debridement to the management of critical-sized bone defects.
View Article and Find Full Text PDFAfter a distal humeral injury, olecranon osteotomy (OO) is a traditional way to visualize the distal humerus for performing fracture fixation. In contrast, the current authors previously showed that novel proximal ulna osteotomy (PUO) allows better access to the distal humerus without ligamentous compromise. Therefore, this study biomechanically compared plating repair following OO versus PUO.
View Article and Find Full Text PDFBackground: Patients with a tibial shaft fracture experiencing their first postoperative complication following treatment with intramedullary nails may be at greater risk of subsequent complications than the whole population. We aimed to determine whether the initial method of nail insertion influences outcome in patients with a tibial shaft fracture requiring multiple reoperations.
Methods: Using the Study to Prospectively Evaluate Reamed Intramedullary Nails in Tibial Shaft Fractures trial data, we categorized patients as those not requiring reoperation, those requiring a single reoperation and those requiring multiple reoperations, and we compared them by nail insertion technique (reamed v.
Nonunion and segmental bone defects are complex issues in orthopedic trauma. The use of endothelial progenitor cells (EPCs), as part of a cell-based therapy for bone healing is a promising approach. In preclinical studies, culture medium (CM) is commonly used to deliver EPCs to the defect site, which has the potential for immunogenicity in humans.
View Article and Find Full Text PDFClinical findings, manufacturer instructions, and surgeon's preferences often dictate the implantation of distal femur locked plates (DFLPs), but healing problems and implant failures still persist. Also, most biomechanical researchers compare a particular DFLP configuration to implants like plates and nails. However, this begs the question: Is this specific DFLP configuration biomechanically optimal to encourage early callus formation, reduce bone and implant failure, and minimize bone "stress shielding"? Consequently, it is crucial to optimize, or characterize, the biomechanical performance (stiffness, strength, fracture micro-motion, bone stress, plate stress) of DFLPs influenced by plate variables (geometry, position, material) and screw variables (distribution, size, number, angle, material).
View Article and Find Full Text PDFImportance: Fractures of the hip have devastating effects on function and quality of life. Intramedullary nails (IMN) are the dominant implant choice for the treatment of trochanteric fractures of the hip. Higher costs of IMNs and inconclusive benefit in comparison with sliding hip screws (SHSs) convey the need for definitive evidence.
View Article and Find Full Text PDFTo develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials. This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.
View Article and Find Full Text PDF