Single electron transport through multiple quantum levels is realized in a Si quantum-dot device at room-temperature conditions. The energy spacing of more than triple the omnipresent thermal energy is obtained from an extremely small ellipsoidal Si quantum dot, and high charge stability is attained through a construction of the gate-all-around structure. These properties may move us a step closer to practical applications of quantum devices at elevated temperatures.
View Article and Find Full Text PDFWe demonstrate vertical graphene-base hot-electron transistors (GB-HETs) with a variety of structures and material parameters. Our GB-HETs exhibit a current saturation with a high current on-off ratio (>10(5)), which results from both the vertical transport of hot electrons across the ultrathin graphene base and the filtering of hot electrons through a built-in energy barrier. The influences of the materials and their thicknesses used for the tunneling and filtering barriers on the common-base current gain α are studied.
View Article and Find Full Text PDFA transparent and flexible graphene charge-trap memory (GCTM) composed of a single-layer graphene channel and a 3-dimensional gate stack was fabricated on a polyethylene naphtalate substrate below eutectic temperatures (~110 °C). The GCTM exhibits memory functionality of ~8.6 V memory window and 30% data retention per 10 years, while maintaining ~80% of transparency in the visible wavelength.
View Article and Find Full Text PDFBilayer graphene has recently earned great attention for its unique electronic properties and commendable use in electronic applications. Here, we report the observation of quantum dot (QD) behaviors in bilayer graphene nanoribbons (BL-GNRs). The periodic Coulomb oscillations indicate the formation of a single quantum dot within the BL-GNR because of the broad distribution function of the carrier concentration fluctuation at the charge neutrality point.
View Article and Find Full Text PDFGraphene's single atomic layer of sp(2) carbon has recently garnered much attention for its potential use in electronic applications. Here, we report a memory application for graphene, which we call graphene flash memory (GFM). GFM has the potential to exceed the performance of current flash memory technology by utilizing the intrinsic properties of graphene, such as high density of states, high work function, and low dimensionality.
View Article and Find Full Text PDFGrowth of graphene on copper (100) single crystals by chemical vapor deposition has been accomplished. The atomic structure of the graphene overlayer was studied using scanning tunneling microscopy. A detailed analysis of moiré superstructures present in the graphene topography reveals that growth occurs in a variety of orientations over the square atomic lattice of the copper surface.
View Article and Find Full Text PDFWe have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency.
View Article and Find Full Text PDFWe report an experimental investigation of the edge effect on the room-temperature transport in graphene nanoribbon and graphene sheet (both single-layer and bilayer). By measuring the resistance scaling behaviors at both low- and high-carrier densities, we show that the transport of single-layer nanoribbons lies in a strong localization regime, which can be attributed to an edge effect. We find that this edge effect can be weakened by enlarging the width, decreasing the carrier densities, or adding an extra layer.
View Article and Find Full Text PDFThe atomic structure of graphene on polycrystalline copper substrates has been studied using scanning tunneling microscopy. The graphene overlayer maintains a continuous pristine atomic structure over atomically flat planes, monatomic steps, edges, and vertices of the copper surface. We find that facets of different identities are overgrown with graphene's perfect carbon honeycomb lattice.
View Article and Find Full Text PDFConductance fluctuation is usually unavoidable in graphene nanoribbons (GNR) due to the presence of disorder along its edges. By measuring the low-frequency noise in GNR devices, we find that the conductance fluctuation is strongly correlated with the density-of-states of GNR. In single-layer GNR, the gate-dependence of noise shows peaks whose positions quantitatively match the subband positions in the band structures of GNR.
View Article and Find Full Text PDFScattering mechanisms in graphene are critical to understanding the limits of signal-to-noise ratios of unsuspended graphene devices. Here we present the four-probe low-frequency noise (1/f) characteristics in back-gated single layer graphene (SLG) and bilayer graphene (BLG) samples. Contrary to the expected noise increase with the resistance, the noise for SLG decreases near the Dirac point, possibly due to the effects of the spatial charge inhomogeneity.
View Article and Find Full Text PDF