Publications by authors named "Emiko Sekine"

In order to study the role of BRCA2 protein in homologous recombination repair and radio-sensitization, we utilized RNA interference strategy in vitro and in vivo with human tumor cells. HeLa cells transfected with small-interfering BRCA2 NA (BRCA2 siRNA) (Qiagen) as well as negative-control siRNA for 48 h were irradiated, and several critical end points were examined. The radiation cell survival level was significantly reduced in HeLa cells with BRCA2 siRNA when compared with mock- or negative-control siRNA transfected cells.

View Article and Find Full Text PDF

Microcephaly is a malformation associated with in utero exposed atomic bomb survivors and can be induced in mice by fetal exposure to ionizing radiation (IR). The pathogenesis of IR-induced microcephaly, however, has not been fully understood. Our analyses of high-coverage expression profiling (HiCEP) demonstrated that the abnormal spindle-like microcephaly associated gene (ASPM) was down-regulated in irradiated human diploid fibroblasts.

View Article and Find Full Text PDF

We investigated the earliest possible chromosome break and repair process in normal human fibroblasts irradiated with low and high LET (linear energy transfer) heavy ion radiation using the modified premature chromosome condensation (PCC) technique utilizing wortmannin (WM) during the fusion incubation period [M. Okada, S. Saito, R.

View Article and Find Full Text PDF

In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 5 (LRP5) is an important regulator of osteoblast growth and differentiation, affecting peak bone mass in vertebrates. Here, we analyzed whether the LRP5 gene was involved in the etiology of postmenopausal osteoporosis, using association analysis between bone mineral density (BMD) and an LRP5 gene single-nucleotide polymorphism (SNP). Association of an SNP in the LRP5 gene at IVS17-1677C > A (intron 17) with BMD was examined in 308 postmenopausal Japanese women (65.

View Article and Find Full Text PDF